mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 16:28:51 -06:00
Use 4-digit years
This commit is contained in:
116
src/model/formulations/DamKucRajAta2016/ramp.jl
Normal file
116
src/model/formulations/DamKucRajAta2016/ramp.jl
Normal file
@@ -0,0 +1,116 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::DamKucRajAta2016,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
RESERVES_WHEN_RAMP_UP = true
|
||||
RESERVES_WHEN_RAMP_DOWN = true
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
known_initial_conditions = true
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
SU = g.startup_limit
|
||||
SD = g.shutdown_limit
|
||||
RU = g.ramp_up_limit
|
||||
RD = g.ramp_down_limit
|
||||
gn = g.name
|
||||
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
|
||||
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t in 1:model[:instance].time
|
||||
time_invariant =
|
||||
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||||
|
||||
# if t > 1 && !time_invariant
|
||||
# @warn(
|
||||
# "Ramping according to Damcı-Kurt et al. (2016) requires " *
|
||||
# "time-invariant minimum power. This does not hold for " *
|
||||
# "generator $(gn): min_power[$t] = $(g.min_power[t]); " *
|
||||
# "min_power[$(t-1)] = $(g.min_power[t-1]). Reverting to " *
|
||||
# "Arroyo and Conejo (2000) formulation for this generator.",
|
||||
# )
|
||||
# end
|
||||
|
||||
max_prod_this_period =
|
||||
prod_above[gn, t] + (
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[gn, t] : 0.0
|
||||
)
|
||||
min_prod_last_period = 0.0
|
||||
if t > 1 && time_invariant
|
||||
min_prod_last_period = prod_above[gn, t-1]
|
||||
|
||||
# Equation (35) in Kneuven et al. (2020)
|
||||
# Sparser version of (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
|
||||
RU * is_on[gn, t]
|
||||
)
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
if t > 1
|
||||
min_prod_last_period =
|
||||
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
else
|
||||
min_prod_last_period = max(g.initial_power, 0.0)
|
||||
end
|
||||
|
||||
# Add the min prod at time t back in to max_prod_this_period to get _total_ production
|
||||
# (instead of using the amount above minimum, as min prod for t < 1 is unknown)
|
||||
max_prod_this_period += g.min_power[t] * is_on[gn, t]
|
||||
|
||||
# Modified version of equation (35) in Kneuven et al. (2020)
|
||||
# Equivalent to (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
|
||||
max_prod_last_period =
|
||||
min_prod_last_period + (
|
||||
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
|
||||
reserve[gn, t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period = prod_above[gn, t]
|
||||
on_last_period = 0.0
|
||||
if t > 1
|
||||
on_last_period = is_on[gn, t-1]
|
||||
elseif (known_initial_conditions && g.initial_status > 0)
|
||||
on_last_period = 1.0
|
||||
end
|
||||
|
||||
if t > 1 && time_invariant
|
||||
# Equation (36) in Kneuven et al. (2020)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
|
||||
RD * on_last_period
|
||||
)
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
# Add back in min power
|
||||
min_prod_this_period += g.min_power[t] * is_on[gn, t]
|
||||
|
||||
# Modified version of equation (36) in Kneuven et al. (2020)
|
||||
# Equivalent to (25)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - RD) * switch_off[gn, t] + RD * on_last_period
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user