UnitCommitment.jl provides a large collection of benchmark instances collected
from the literature and converted to a common data format. If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources, as listed below. [See documentation for more details](https://anl-ceeesa.github.io/UnitCommitment.jl/).
References
----------
### PGLIB-UC
* Coffrin, Carleton and Knueven, Bernard. "Power Grid Lib - Unit Commitment". https://github.com/power-grid-lib/pglib-uc
### UnitCommitment.jl
* Knueven, Bernard, James Ostrowski, and Jean-Paul Watson. "On mixed integer programming formulations for the unit commitment problem." Pre-print available at http://www.optimization-online.org/DB_HTML/2018/11/6930.pdf (2018).
* [UCJL] **Alinson S. Xavier, Feng Qiu.** "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment". Zenodo (2020). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874)
* Krall, Eric, Michael Higgins, and Richard P. O’Neill. "RTO unit commitment test system." Federal Energy Regulatory Commission. Available: http://ferc.gov/legal/staff-reports/rto-COMMITMENT-TEST.pdf (2012).
### MATPOWER
* https://github.com/MATPOWER/matpower
* [MTPWR] **D. Zimmerman, C. E. Murillo-Sandnchez and R. J. Thomas.** "Matpower: Steady-state operations, planning, and analysis tools forpower systems research and education", IEEE Transactions on PowerSystems, vol. 26, no. 1, pp. 12 –19, Feb. 2011. [DOI: 10.1109/TPWRS.2010.2051168](https://doi.org/10.1109/TPWRS.2010.2051168)
* [PSTCA] **University of Washington, Dept. of Electrical Engineering.** "Power Systems Test Case Archive". Available at: <http://www.ee.washington.edu/research/pstca/> (Accessed: Nov 14, 2020)
* [JoFlMa16] **C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici.** "AC Power Flow
Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE". [ArXiv (2016)](https://arxiv.org/abs/1603.01533).
* [FlPaCa13] **S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel.**
"Contingency ranking with respect to overloads in very large power
systems taking into account uncertainty, preventive and corrective
actions", Power Systems, IEEE Trans. on, (28)4:4909-4917, 2013.
* R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, "MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education," Power Systems, IEEE Transactions on, vol. 26, no. 1, pp. 12–19, Feb. 2011.
### PGLIB-UC
* [PGLIB] **Carleton Coffrin and Bernard Knueven.** "Power Grid Lib - Unit Commitment". Available at: <https://github.com/power-grid-lib/pglib-uc> (Accessed: Nov 14, 2020)
* C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, "AC Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE" https://arxiv.org/abs/1603.01533
* [KrHiOn12] **Eric Krall, Michael Higgins and Richard P. O’Neill.** "RTO unit commitment test system." Federal Energy Regulatory Commission. Available at: <https://www.ferc.gov/industries-data/electric/power-sales-and-markets/increasing-efficiency-through-improved-software-1> (Accessed: Nov 14, 2020)
* S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, "Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive and corrective actions", Power Systems, IEEE Trans. on, (28)4:4909-4917, 2013. https://doi.org/10.1109/TPWRS.2013.2251015
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)
### RTS-GMLC
* https://github.com/GridMod/RTS-GMLC
* Barrows, Clayton, Aaron Bloom, Ali Ehlen, Jussi Ikaheimo, Jennie Jorgenson, Dheepak Krishnamurthy, Jessica Lau et al. "The IEEE Reliability Test System: A Proposed 2019 Update." IEEE Transactions on Power Systems (2019).
* [BaBlEh19] **Clayton Barrows, Aaron Bloom, Ali Ehlen, Jussi Ikaheimo, Jennie Jorgenson, Dheepak Krishnamurthy, Jessica Lau et al.** "The IEEE Reliability Test System: A Proposed 2019 Update." IEEE Transactions on Power Systems (2019). [DOI: 10.1109/TPWRS.2019.2925557](https://doi.org/10.1109/TPWRS.2019.2925557)
### OR-LIB
* [ORLIB] **J.E.Beasley.** "OR-Library: distributing test problems by electronic mail", Journal of the Operational Research Society 41(11) (1990). [DOI: 10.2307/2582903](https://doi.org/10.2307/2582903)
* [FrGe06] **A. Frangioni, C. Gentile.** "Solving nonlinear single-unit commitment problems with ramping constraints" Operations Research 54(4), p. 767 - 775, 2006. [DOI: 10.1287/opre.1060.0309](https://doi.org/10.1287/opre.1060.0309)
### Tejada19
* [TeLuSa19] **D. A. Tejada-Arango, S. Lumbreras, P. Sanchez-Martin and A. Ramos.** "Which Unit-Commitment Formulation is Best? A Systematic Comparison," in IEEE Transactions on Power Systems. [DOI: 10.1109/TPWRS.2019.2962024](https://ieeexplore.ieee.org/document/8941313/).
UnitCommitment.jl provides a collection of large-scale benchmark instances collected
from the literature in a [standard data format](format.md) and, in some cases, extended with realistic unit commitment data, produced by data-driven methods. If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources (as listed below).
UnitCommitment.jl provides a large collection of benchmark instances collected
from the literature and converted to a [common data format](format.md). In some cases, as indicated below, the original instances have been extended, with realistic parameters, using data-driven methods.
If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources.
Raw instances files are [available at our GitHub repository](https://github.com/ANL-CEEESA/UnitCommitment.jl/tree/dev/instances). Benchmark instances can also be loaded with
`UnitCommitment.read_benchmark(name)`, as explained in the [usage section](usage.md), where `name` is one of the names below.
`UnitCommitment.read_benchmark(name)`, as explained in the [usage section](usage.md).
## 1. PGLIB-UC Instances
[PGLIB-UC](https://github.com/power-grid-lib/pglib-uc) is a benchmark library curated and maintained by the [IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms](https://power-grid-lib.github.io/).
### 1.1 PGLIB-UC/California
Test cases based on publicly available data from the California ISO. For more details, see [PGLIB-UC case file overview](https://github.com/power-grid-lib/pglib-uc).
Test cases based on publicly available unit commitment test instance from the Federal Energy Regulatory Commission. For more details, see [PGLIB-UC case file overview](https://github.com/power-grid-lib/pglib-uc).
[RTS-GMLC](https://github.com/GridMod/RTS-GMLC) is an updated version of the RTS-96 test system produced by the United States Department of Energy's [Grid Modernization Laboratory Consortium](https://gmlc.doe.gov/). The PGLIB-UC/RTS-GMLC instances are modified versions of the original RTS-GMLC instances, with modified ramp-rates and without a transmission network. For more details, see [PGLIB-UC case file overview](https://github.com/power-grid-lib/pglib-uc).
[MATPOWER](https://github.com/MATPOWER/matpower) is an open-source package for solving power flow problems in MATLAB and Octave. It contains a number of power flow test cases, which have been widely used in the power systems literature.
@ -108,7 +25,7 @@ Because most MATPOWER test cases were originally designed for power flow studies
For each MATPOWER test case, UC.jl provides two variations (`2017-02-01` and `2017-08-01`) corresponding respectively to a winter and to a summer test case.
### 2.1 MATPOWER/UW-PSTCA
### 1.1 MATPOWER/UW-PSTCA
A variety of smaller IEEE test cases, [compiled by University of Washington](http://labs.ece.uw.edu/pstca/), corresponding mostly to small portions of the American Electric Power System in the 1960s.
@ -126,7 +43,7 @@ A variety of smaller IEEE test cases, [compiled by University of Washington](htt
Test cases based on the Polish 400, 220 and 110 kV networks, originally provided by **Roman Korab** (Politechnika Śląska) and corrected by the MATPOWER team.
@ -149,7 +66,7 @@ Test cases based on the Polish 400, 220 and 110 kV networks, originally provided
Test cases from the [Pan European Grid Advanced Simulation and State Estimation (PEGASE) project](https://cordis.europa.eu/project/id/211407), describing part of the European high voltage transmission network.
@ -166,7 +83,7 @@ Test cases from the [Pan European Grid Advanced Simulation and State Estimation
Test cases from the R&D Division at [Reseau de Transport d'Electricite](https://www.rte-france.com) representing the size and complexity of the French very high voltage transmission network.
@ -189,11 +106,202 @@ Test cases from the R&D Division at [Reseau de Transport d'Electricite](https://
[PGLIB-UC](https://github.com/power-grid-lib/pglib-uc) is a benchmark library curated and maintained by the [IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms](https://power-grid-lib.github.io/).
### 2.1 PGLIB-UC/California
Test cases based on publicly available data from the California ISO. For more details, see [PGLIB-UC case file overview](https://github.com/power-grid-lib/pglib-uc).
Test cases based on publicly available unit commitment test instance from the Federal Energy Regulatory Commission. For more details, see [PGLIB-UC case file overview](https://github.com/power-grid-lib/pglib-uc).
[RTS-GMLC](https://github.com/GridMod/RTS-GMLC) is an updated version of the RTS-96 test system produced by the United States Department of Energy's [Grid Modernization Laboratory Consortium](https://gmlc.doe.gov/). The PGLIB-UC/RTS-GMLC instances are modified versions of the original RTS-GMLC instances, with modified ramp-rates and without a transmission network. For more details, see [PGLIB-UC case file overview](https://github.com/power-grid-lib/pglib-uc).
[OR-LIB](http://people.brunel.ac.uk/~mastjjb/jeb/info.html) is a collection of test data sets for a variety of operations research problems, including unit commitment. The UC instances in OR-LIB are synthetic instances generated by [**Antonio Frangioni** random UC generator](http://groups.di.unipi.it/optimize/Data/UC.html).
Test cases used in the paper **"Which Unit-Commitment Formulation is Best? A Comparison Framework"** by D. Tejada-Arango, S. Lumbreras, P. Sanchez-Martin and A. Ramos (2019).
These instances are similar to OR-LIB/UC, in the sense that they have also been generated using [Antonio Frangioni's random instance generator](http://groups.di.unipi.it/optimize/Data/UC.html), but are much larger.
* [UCJL] **Alinson S. Xavier, Feng Qiu.** "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment". Zenodo (2020). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874)
* [KnOsWa18] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)
* [KrHiOn12] **Eric Krall, Michael Higgins and Richard P. O’Neill.** "RTO unit commitment test system." Federal Energy Regulatory Commission. Available at: <https://www.ferc.gov/industries-data/electric/power-sales-and-markets/increasing-efficiency-through-improved-software-1> (Accessed: Nov 14, 2020)
@ -211,3 +319,9 @@ actions", Power Systems, IEEE Trans. on, (28)4:4909-4917, 2013.
* [MTPWR] **D. Zimmerman, C. E. Murillo-Sandnchez and R. J. Thomas.** "Matpower: Steady-state operations, planning, and analysis tools forpower systems research and education", IEEE Transactions on PowerSystems, vol. 26, no. 1, pp. 12 –19, Feb. 2011. [DOI: 10.1109/TPWRS.2010.2051168](https://doi.org/10.1109/TPWRS.2010.2051168)
* [PSTCA] **University of Washington, Dept. of Electrical Engineering.** "Power Systems Test Case Archive". Available at: <http://www.ee.washington.edu/research/pstca/> (Accessed: Nov 14, 2020)
* [ORLIB] **J.E.Beasley.** "OR-Library: distributing test problems by electronic mail", Journal of the Operational Research Society 41(11) (1990). [DOI: 10.2307/2582903](https://doi.org/10.2307/2582903)
* [FrGe06] **A. Frangioni, C. Gentile.** "Solving nonlinear single-unit commitment problems with ramping constraints" Operations Research 54(4), p. 767 - 775, 2006. [DOI: 10.1287/opre.1060.0309](https://doi.org/10.1287/opre.1060.0309)
* [TeLuSa19] **D. A. Tejada-Arango, S. Lumbreras, P. Sanchez-Martin and A. Ramos.** "Which Unit-Commitment Formulation is Best? A Systematic Comparison," in IEEE Transactions on Power Systems. [DOI: 10.1109/TPWRS.2019.2962024](https://ieeexplore.ieee.org/document/8941313/).