Compare commits

...

19 Commits

Author SHA1 Message Date
Aleksandr Kazachkov
5afb2363af Missed function definition 2021-07-26 18:40:09 -04:00
Aleksandr Kazachkov
860c47b7e3 Shutdown cost not in this commit 2021-07-26 18:38:38 -04:00
Aleksandr Kazachkov
37b21853be Added mising formulation_status_vars 2021-07-26 18:37:06 -04:00
Aleksandr Kazachkov
c8c7350096 Added fix_vars to src/model/formulations/Gar1962/status.jl 2021-07-26 18:32:09 -04:00
Aleksandr Kazachkov
7302fabe37 Added fix vars to unit.jl 2021-07-26 18:30:24 -04:00
Aleksandr Kazachkov
4ed13d6e95 Added fix_vars_via_constraint option 2021-07-26 18:29:15 -04:00
b1498c50b3 GitHub Actions: Test fewer combinations 2021-07-26 07:57:17 -05:00
Aleksandr Kazachkov
000215e991 Add reserve shortfall penalty 2021-07-26 07:54:45 -05:00
7a1b6f0f55 Update CHANGELOG.md 2021-07-21 11:18:22 -05:00
719143ea40 Flip coefficients in eq_net_injection; add example to the docs 2021-07-21 11:04:11 -05:00
07d7e04728 Fix bug in validation script; create large tests 2021-07-21 09:49:20 -05:00
4daf38906d Merge pull request #12 from mtanneau/mt/FixDuplicateStartup
Fix duplicated startup constraint
2021-07-19 17:14:39 -05:00
mtanneau
b2eaa0e48b Fix duplicated startup constraint 2021-07-17 15:57:03 -04:00
821d48bdc6 Implement instance randomization 2021-06-17 10:17:50 -05:00
cee86168ce Update README.md 2021-06-03 16:25:10 -05:00
a7f9e84c31 Add Gar1962.ProdVars 2021-06-03 08:13:05 -05:00
063b602d1a Create file for status vars; add Gar1962.StatusVars 2021-06-02 20:56:31 -05:00
2f90c48d60 table.py: Print validation errors 2021-06-02 11:38:07 -05:00
98ae4d3ad4 Update docs 2021-06-02 09:36:32 -05:00
34 changed files with 686 additions and 186 deletions

View File

@@ -9,8 +9,8 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
julia-version: ['1.3', '1.4', '1.5', '1.6']
julia-arch: [x64, x86]
julia-version: ['1.4', '1.5', '1.6']
julia-arch: [x64]
os: [ubuntu-latest, windows-latest, macOS-latest]
exclude:
- os: macOS-latest

View File

@@ -11,6 +11,11 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.2.2] - 2021-07-21
### Fixed
- Fix small bug in validation scripts related to startup costs
- Fix duplicated startup constraints (@mtanneau, #12)
## [0.2.1] - 2021-06-02
### Added
- Add multiple ramping formulations (ArrCon2000, MorLatRam2013, DamKucRajAta2016, PanGua2016)

View File

@@ -2,10 +2,11 @@ name = "UnitCommitment"
uuid = "64606440-39ea-11e9-0f29-3303a1d3d877"
authors = ["Santos Xavier, Alinson <axavier@anl.gov>"]
repo = "https://github.com/ANL-CEEESA/UnitCommitment.jl"
version = "0.2.1"
version = "0.2.2"
[deps]
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
@@ -19,6 +20,7 @@ SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[compat]
Cbc = "0.7"
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
JSON = "0.21"
JuMP = "0.21"
@@ -29,6 +31,7 @@ julia = "1"
[extras]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
[targets]
test = ["Cbc", "Test"]
test = ["Cbc", "Test", "Gurobi"]

View File

@@ -20,7 +20,7 @@
* **Data Format:** The package proposes an extensible and fully-documented JSON-based data format for SCUC, developed in collaboration with Independent System Operators (ISOs), which describes the most important aspects of the problem. The format supports the most common generator characteristics (including ramping, piecewise-linear production cost curves and time-dependent startup costs), as well as operating reserves, price-sensitive loads, transmission networks and contingencies.
* **Benchmark Instances:** The package provides a diverse collection of large-scale benchmark instances collected from the literature, converted into a common data format, and extended using data-driven methods to make them more challenging and realistic.
* **Model Implementation**: The package provides a Julia/JuMP implementations of state-of-the-art formulations and solution methods for SCUC, including multiple ramping formulations ([ArrCon2000][ArrCon2000], [MorLatRam2013][MorLatRam2013], [DamKucRajAta2016][DamKucRajAta2016], [PanGua2016][PanGua2016]), multiple piecewise-linear costs formulations ([Gar1962][Gar1962], [CarArr2006][CarArr2006], [KnuOstWat2018][KnuOstWat2018]) and contingency screening methods ([XavQiuWanThi2019][XavQiuWanThi2019]). Our goal is to keep these implementations up-to-date as new methods are proposed in the literature.
* **Model Implementation**: The package provides Julia/JuMP implementations of state-of-the-art formulations and solution methods for SCUC, including multiple ramping formulations ([ArrCon2000][ArrCon2000], [MorLatRam2013][MorLatRam2013], [DamKucRajAta2016][DamKucRajAta2016], [PanGua2016][PanGua2016]), multiple piecewise-linear costs formulations ([Gar1962][Gar1962], [CarArr2006][CarArr2006], [KnuOstWat2018][KnuOstWat2018]) and contingency screening methods ([XavQiuWanThi2019][XavQiuWanThi2019]). Our goal is to keep these implementations up-to-date as new methods are proposed in the literature.
* **Benchmark Tools:** The package provides automated benchmark scripts to accurately evaluate the performance impact of proposed code changes.
[ArrCon2000]: https://doi.org/10.1109/59.871739

View File

@@ -6,6 +6,9 @@ from pathlib import Path
import pandas as pd
import re
from tabulate import tabulate
from colorama import init, Fore, Back, Style
init()
def process_all_log_files():
@@ -48,6 +51,7 @@ def process(filename):
# m = re.search("case([0-9]*)", instance_name)
# n_buses = int(m.group(1))
n_buses = 0
validation_errors = 0
with open(filename) as file:
for line in file.readlines():
@@ -137,6 +141,14 @@ def process(filename):
if m is not None:
transmission_count += 1
m = re.search(r".*Found ([0-9]*) validation errors", line)
if m is not None:
validation_errors += int(m.group(1))
print(
f"{Fore.YELLOW}{Style.BRIGHT}Warning:{Style.RESET_ALL} {validation_errors:8d} "
f"{Style.DIM}validation errors in {Style.RESET_ALL}{group_name}/{instance_name}/{sample_name}"
)
return {
"Group": group_name,
"Instance": instance_name,
@@ -168,6 +180,7 @@ def process(filename):
"Transmission screening constraints": transmission_count,
"Transmission screening time": transmission_time,
"Transmission screening calls": transmission_calls,
"Validation errors": validation_errors,
}

View File

@@ -28,13 +28,14 @@ Each section is described in detail below. For a complete example, see [case14](
### Parameters
This section describes system-wide parameters, such as power balance penalties, optimization parameters, such as the length of the planning horizon and the time.
This section describes system-wide parameters, such as power balance and reserve shortfall penalties, and optimization parameters, such as the length of the planning horizon and the time.
| Key | Description | Default | Time series?
| :----------------------------- | :------------------------------------------------ | :------: | :------------:
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time step (min)` | Length of each time step (in minutes). Must be a divisor of 60 (e.g. 60, 30, 20, 15, etc). | `60` | N
| `Power balance penalty ($/MW)` | Penalty for system-wide shortage or surplus in production (in $/MW). This is charged per time step. For example, if there is a shortage of 1 MW for three time steps, three times this amount will be charged. | `1000.0` | Y
| `Reserve shortfall penalty ($/MW)` | Penalty for system-wide shortage in meeting reserve requirements (in $/MW). This is charged per time step. Negative value implies reserve constraints must always be satisfied. | `-1` | Y
#### Example
@@ -42,7 +43,8 @@ This section describes system-wide parameters, such as power balance penalties,
{
"Parameters": {
"Time horizon (h)": 4,
"Power balance penalty ($/MW)": 1000.0
"Power balance penalty ($/MW)": 1000.0,
"Reserve shortfall penalty ($/MW)": -1.0
}
}
```

View File

@@ -148,7 +148,7 @@ for g in instance.units
end
```
### Modifying the model
### Fixing variables, modifying objective function and adding constraints
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it. The script below shows how can this be accomplished. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
@@ -190,6 +190,54 @@ JuMP.set_objective_coefficient(
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
References
----------
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)

View File

@@ -71,7 +71,7 @@ Advanced usage
### Customizing the formulation
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based the modeling components that you choose, as shown in the next example.
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
```julia
using Cbc
@@ -119,7 +119,10 @@ instance = UnitCommitment.read("instance.json")
UnitCommitment.generate_initial_conditions!(instance, Cbc.Optimizer)
# Construct and solve optimization model
model = UnitCommitment.build_model(instance, Cbc.Optimizer)
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
UnitCommitment.optimize!(model)
```

Binary file not shown.

View File

@@ -30,6 +30,8 @@ include("model/formulations/base/unit.jl")
include("model/formulations/CarArr2006/pwlcosts.jl")
include("model/formulations/DamKucRajAta2016/ramp.jl")
include("model/formulations/Gar1962/pwlcosts.jl")
include("model/formulations/Gar1962/status.jl")
include("model/formulations/Gar1962/prod.jl")
include("model/formulations/KnuOstWat2018/pwlcosts.jl")
include("model/formulations/MorLatRam2013/ramp.jl")
include("model/formulations/MorLatRam2013/scosts.jl")
@@ -46,6 +48,7 @@ include("solution/warmstart.jl")
include("solution/write.jl")
include("transform/initcond.jl")
include("transform/slice.jl")
include("transform/randomize.jl")
include("utils/log.jl")
include("validation/repair.jl")
include("validation/validate.jl")

View File

@@ -98,6 +98,10 @@ function _from_json(json; repair = true)
json["Parameters"]["Power balance penalty (\$/MW)"],
default = [1000.0 for t in 1:T],
)
shortfall_penalty = timeseries(
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
default = [-1.0 for t in 1:T],
)
# Read buses
for (bus_name, dict) in json["Buses"]
@@ -264,6 +268,7 @@ function _from_json(json; repair = true)
instance = UnitCommitmentInstance(
T,
power_balance_penalty,
shortfall_penalty,
units,
buses,
lines,

View File

@@ -72,6 +72,8 @@ end
mutable struct UnitCommitmentInstance
time::Int
power_balance_penalty::Vector{Float64}
"Penalty for failing to meet reserve requirement."
shortfall_penalty::Vector{Float64}
units::Vector{Unit}
buses::Vector{Bus}
lines::Vector{TransmissionLine}

View File

@@ -5,7 +5,9 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation::ArrCon2000.Ramping,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::ArrCon2000.Ramping,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -17,15 +19,19 @@ function _add_ramp_eqs!(
RD = g.ramp_down_limit
SU = g.startup_limit
SD = g.shutdown_limit
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_ramp_up)
is_initially_on = (g.initial_status > 0)
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:model[:instance].time
# Ramp up limit
if t == 1

View File

@@ -5,13 +5,18 @@
function _add_production_piecewise_linear_eqs!(
model::JuMP.Model,
g::Unit,
formulation::CarArr2006.PwlCosts,
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::CarArr2006.PwlCosts,
formulation_status_vars::StatusVarsFormulation,
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit)
prod_above = model[:prod_above]
segprod = model[:segprod]
gn = g.name
# Gar1962.ProdVars
prod_above = model[:prod_above]
K = length(g.cost_segments)
for t in 1:model[:instance].time
gn = g.name

View File

@@ -5,7 +5,9 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation::DamKucRajAta2016.Ramping,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::DamKucRajAta2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -21,9 +23,13 @@ function _add_ramp_eqs!(
gn = g.name
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]

View File

@@ -0,0 +1,50 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_production_vars!(
model::JuMP.Model,
g::Unit,
formulation_prod_vars::Gar1962.ProdVars,
)::Nothing
prod_above = _init(model, :prod_above)
segprod = _init(model, :segprod)
for t in 1:model[:instance].time
for k in 1:length(g.cost_segments)
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
end
prod_above[g.name, t] = @variable(model, lower_bound = 0)
end
return
end
function _add_production_limit_eqs!(
model::JuMP.Model,
g::Unit,
formulation_prod_vars::Gar1962.ProdVars,
)::Nothing
eq_prod_limit = _init(model, :eq_prod_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
gn = g.name
for t in 1:model[:instance].time
# Objective function terms for production costs
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
# Production limit
# Equation (18) in Kneuven et al. (2020)
# as \bar{p}_g(t) \le \bar{P}_g u_g(t)
# amk: this is a weaker version of (20) and (21) in Kneuven et al. (2020)
# but keeping it here in case those are not present
power_diff = max(g.max_power[t], 0.0) - max(g.min_power[t], 0.0)
if power_diff < 1e-7
power_diff = 0.0
end
eq_prod_limit[gn, t] = @constraint(
model,
prod_above[gn, t] + reserve[gn, t] <= power_diff * is_on[gn, t]
)
end
end

View File

@@ -5,14 +5,21 @@
function _add_production_piecewise_linear_eqs!(
model::JuMP.Model,
g::Unit,
formulation::Gar1962.PwlCosts,
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::Gar1962.PwlCosts,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
segprod = model[:segprod]
gn = g.name
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
K = length(g.cost_segments)
for t in 1:model[:instance].time
# Definition of production

View File

@@ -0,0 +1,145 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
_add_status_vars!
Adds symbols identified by `Gar1962.StatusVars` to `model`.
Fix variables if a certain generator _must_ run or based on initial conditions.
"""
function _add_status_vars!(
model::JuMP.Model,
g::Unit,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
is_on = _init(model, :is_on)
switch_on = _init(model, :switch_on)
switch_off = _init(model, :switch_off)
FIX_VARS = !formulation_status_vars.fix_vars_via_constraint
is_initially_on = _is_initially_on(g) > 0
for t in 1:model[:instance].time
is_on[g.name, t] = @variable(model, binary = true)
switch_on[g.name, t] = @variable(model, binary = true)
switch_off[g.name, t] = @variable(model, binary = true)
# Use initial conditions and whether a unit must run to fix variables
if FIX_VARS
# Fix variables using fix function
if g.must_run[t]
# If the generator _must_ run, then it is obviously on and cannot be switched off
# In the first time period, force unit to switch on if was off before
# Otherwise, unit is on, and will never turn off, so will never need to turn on
fix(is_on[g.name, t], 1.0; force = true)
fix(
switch_on[g.name, t],
(t == 1 ? 1.0 - _is_initially_on(g) : 0.0);
force = true,
)
fix(switch_off[g.name, t], 0.0; force = true)
elseif t == 1
if is_initially_on
# Generator was on (for g.initial_status time periods),
# so cannot be more switched on until the period after the first time it can be turned off
fix(switch_on[g.name, 1], 0.0; force = true)
else
# Generator is initially off (for -g.initial_status time periods)
# Cannot be switched off more
fix(switch_off[g.name, 1], 0.0; force = true)
end
end
else
# Add explicit constraint if !FIX_VARS
if g.must_run[t]
is_on[g.name, t] = 1.0
switch_on[g.name, t] =
(t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
switch_off[g.name, t] = 0.0
elseif t == 1
if is_initially_on
switch_on[g.name, t] = 0.0
else
switch_off[g.name, t] = 0.0
end
end
end
# Use initial conditions and whether a unit must run to fix variables
if FIX_VARS
# Fix variables using fix function
if g.must_run[t]
# If the generator _must_ run, then it is obviously on and cannot be switched off
# In the first time period, force unit to switch on if was off before
# Otherwise, unit is on, and will never turn off, so will never need to turn on
fix(is_on[g.name, t], 1.0; force = true)
fix(
switch_on[g.name, t],
(t == 1 ? 1.0 - _is_initially_on(g) : 0.0);
force = true,
)
fix(switch_off[g.name, t], 0.0; force = true)
elseif t == 1
if is_initially_on
# Generator was on (for g.initial_status time periods),
# so cannot be more switched on until the period after the first time it can be turned off
fix(switch_on[g.name, 1], 0.0; force = true)
else
# Generator is initially off (for -g.initial_status time periods)
# Cannot be switched off more
fix(switch_off[g.name, 1], 0.0; force = true)
end
end
else
# Add explicit constraint if !FIX_VARS
if g.must_run[t]
is_on[g.name, t] = 1.0
switch_on[g.name, t] =
(t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
switch_off[g.name, t] = 0.0
elseif t == 1
if is_initially_on
switch_on[g.name, t] = 0.0
else
switch_off[g.name, t] = 0.0
end
end
end
end
return
end
function _add_status_eqs!(
model::JuMP.Model,
g::Unit,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
eq_binary_link = _init(model, :eq_binary_link)
eq_switch_on_off = _init(model, :eq_switch_on_off)
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:model[:instance].time
if !g.must_run[t]
# Link binary variables
if t == 1
eq_binary_link[g.name, t] = @constraint(
model,
is_on[g.name, t] - _is_initially_on(g) ==
switch_on[g.name, t] - switch_off[g.name, t]
)
else
eq_binary_link[g.name, t] = @constraint(
model,
is_on[g.name, t] - is_on[g.name, t-1] ==
switch_on[g.name, t] - switch_off[g.name, t]
)
end
# Cannot switch on and off at the same time
eq_switch_on_off[g.name, t] = @constraint(
model,
switch_on[g.name, t] + switch_off[g.name, t] <= 1
)
end
end
return
end

View File

@@ -14,7 +14,56 @@ Formulation described in:
module Gar1962
import ..PiecewiseLinearCostsFormulation
import ..ProductionVarsFormulation
import ..StatusVarsFormulation
"""
Variables
---
* `prod_above`:
[gen, t];
*production above minimum required level*;
lb: 0, ub: Inf.
KnuOstWat2020: `p'_g(t)`
* `segprod`:
[gen, segment, t];
*how much generator produces on cost segment in time t*;
lb: 0, ub: Inf.
KnuOstWat2020: `p_g^l(t)`
"""
struct ProdVars <: ProductionVarsFormulation end
struct PwlCosts <: PiecewiseLinearCostsFormulation end
"""
Variables
---
* `is_on`:
[gen, t];
*is generator on at time t?*
lb: 0, ub: 1, binary.
KnuOstWat2020: `u_g(t)`
* `switch_on`:
[gen, t];
*indicator that generator will be turned on at t*;
lb: 0, ub: 1, binary.
KnuOstWat2020: `v_g(t)`
* `switch_off`: binary;
[gen, t];
*indicator that generator will be turned off at t*;
lb: 0, ub: 1, binary.
KnuOstWat2020: `w_g(t)`
Arguments
---
* `fix_vars_via_constraint`:
indicator for whether to set vars to a constant using `fix` or by adding an explicit constraint
(particulary useful for debugging purposes).
"""
struct StatusVars <: StatusVarsFormulation
fix_vars_via_constraint::Bool
StatusVars() = new(false)
end
end

View File

@@ -5,21 +5,27 @@
function _add_production_piecewise_linear_eqs!(
model::JuMP.Model,
g::Unit,
formulation::KnuOstWat2018.PwlCosts,
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
eq_segprod_limit_b = _init(model, :eq_segprod_limit_b)
eq_segprod_limit_c = _init(model, :eq_segprod_limit_c)
prod_above = model[:prod_above]
segprod = model[:segprod]
is_on = model[:is_on]
switch_on = model[:switch_on]
switch_off = model[:switch_off]
gn = g.name
K = length(g.cost_segments)
T = model[:instance].time
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_on = model[:switch_on]
switch_off = model[:switch_off]
for t in 1:T
for k in 1:K
# Pbar^{k-1)

View File

@@ -5,7 +5,9 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation::MorLatRam2013.Ramping,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::MorLatRam2013.Ramping,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -20,9 +22,13 @@ function _add_ramp_eqs!(
gn = g.name
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_str_ramp_up)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]

View File

@@ -12,14 +12,14 @@ function _add_startup_cost_eqs!(
S = length(g.startup_categories)
startup = model[:startup]
for t in 1:model[:instance].time
for s in 1:S
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t, s] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
for s in 1:S
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
# The last startup category is always allowed.
if s < S

View File

@@ -1,16 +1,18 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation::PanGua2016.Ramping,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::PanGua2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_SHUT_DOWN = true
gn = g.name
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
eq_prod_limit_ramp_up_extra_period =
_init(model, :eq_prod_limit_ramp_up_extra_period)
@@ -23,6 +25,14 @@ function _add_ramp_eqs!(
RD = g.ramp_down_limit # ramp down rate
T = model[:instance].time
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:T
Pbar = g.max_power[t]
if Pbar < 1e-7

View File

@@ -4,15 +4,11 @@
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
net_injection = _init(model, :expr_net_injection)
reserve = _init(model, :expr_reserve)
curtail = _init(model, :curtail)
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
# Reserves
reserve[b.name, t] = AffExpr()
# Load curtailment
curtail[b.name, t] =
@variable(model, lower_bound = 0, upper_bound = b.load[t])

View File

@@ -6,20 +6,33 @@ abstract type TransmissionFormulation end
abstract type RampingFormulation end
abstract type PiecewiseLinearCostsFormulation end
abstract type StartupCostsFormulation end
abstract type StatusVarsFormulation end
abstract type ProductionVarsFormulation end
struct Formulation
prod_vars::ProductionVarsFormulation
pwl_costs::PiecewiseLinearCostsFormulation
ramping::RampingFormulation
startup_costs::StartupCostsFormulation
status_vars::StatusVarsFormulation
transmission::TransmissionFormulation
function Formulation(;
prod_vars::ProductionVarsFormulation = Gar1962.ProdVars(),
pwl_costs::PiecewiseLinearCostsFormulation = KnuOstWat2018.PwlCosts(),
ramping::RampingFormulation = MorLatRam2013.Ramping(),
startup_costs::StartupCostsFormulation = MorLatRam2013.StartupCosts(),
status_vars::StatusVarsFormulation = Gar1962.StatusVars(),
transmission::TransmissionFormulation = ShiftFactorsFormulation(),
)
return new(pwl_costs, ramping, startup_costs, transmission)
return new(
prod_vars,
pwl_costs,
ramping,
startup_costs,
status_vars,
transmission,
)
end
end

View File

@@ -11,12 +11,12 @@ end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
T = model[:instance].time
net_injection = _init(model, :net_injection)
eq_net_injection_def = _init(model, :eq_net_injection_def)
eq_net_injection = _init(model, :eq_net_injection)
eq_power_balance = _init(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
eq_net_injection_def[t, b.name] =
@constraint(model, n == model[:expr_net_injection][b.name, t])
eq_net_injection[b.name, t] =
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
end
for t in 1:T
eq_power_balance[t] = @constraint(
@@ -29,13 +29,28 @@ end
function _add_reserve_eqs!(model::JuMP.Model)::Nothing
eq_min_reserve = _init(model, :eq_min_reserve)
for t in 1:model[:instance].time
instance = model[:instance]
for t in 1:instance.time
# Equation (68) in Kneuven et al. (2020)
# As in Morales-España et al. (2013a)
# Akin to the alternative formulation with max_power_avail
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
shortfall_penalty = instance.shortfall_penalty[t]
eq_min_reserve[t] = @constraint(
model,
sum(
model[:expr_reserve][b.name, t] for b in model[:instance].buses
) >= model[:instance].reserves.spinning[t]
sum(model[:reserve][g.name, t] for g in instance.units) +
(shortfall_penalty >= 0 ? model[:reserve_shortfall][t] : 0.0) >=
instance.reserves.spinning[t]
)
# Account for shortfall contribution to objective
if shortfall_penalty >= 0
add_to_expression!(
model[:obj],
shortfall_penalty,
model[:reserve_shortfall][t],
)
end
end
return
end

View File

@@ -2,7 +2,16 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_unit!(model::JuMP.Model, g::Unit, f::Formulation)
"""
_add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
Add production, reserve, startup, shutdown, and status variables,
and constraints for min uptime/downtime, net injection, production, ramping, startup, shutdown, and status.
Fix variables if a certain generator _must_ run or if a generator provides spinning reserves.
Also, add overflow penalty to objective for each transmission line.
"""
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported")
end
@@ -11,72 +20,54 @@ function _add_unit!(model::JuMP.Model, g::Unit, f::Formulation)
end
# Variables
_add_production_vars!(model, g)
_add_production_vars!(model, g, formulation.prod_vars)
_add_reserve_vars!(model, g)
_add_startup_shutdown_vars!(model, g)
_add_status_vars!(model, g)
_add_status_vars!(model, g, formulation.status_vars)
# Constraints and objective function
_add_min_uptime_downtime_eqs!(model, g)
_add_net_injection_eqs!(model, g)
_add_production_limit_eqs!(model, g)
_add_production_piecewise_linear_eqs!(model, g, f.pwl_costs)
_add_ramp_eqs!(model, g, f.ramping)
_add_startup_cost_eqs!(model, g, f.startup_costs)
_add_startup_shutdown_limit_eqs!(model, g)
_add_status_eqs!(model, g)
_add_production_limit_eqs!(model, g, formulation.prod_vars)
_add_production_piecewise_linear_eqs!(
model,
g,
formulation.prod_vars,
formulation.pwl_costs,
formulation.status_vars,
)
_add_ramp_eqs!(
model,
g,
formulation.prod_vars,
formulation.ramping,
formulation.status_vars,
)
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
_add_startup_shutdown_limit_eqs!(
model,
g,
formulation.status_vars,
formulation.prod_vars,
)
_add_status_eqs!(model, g, formulation.status_vars)
return
end
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
function _add_production_vars!(model::JuMP.Model, g::Unit)::Nothing
prod_above = _init(model, :prod_above)
segprod = _init(model, :segprod)
for t in 1:model[:instance].time
for k in 1:length(g.cost_segments)
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
end
prod_above[g.name, t] = @variable(model, lower_bound = 0)
end
return
end
function _add_production_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
eq_prod_limit = _init(model, :eq_prod_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
gn = g.name
for t in 1:model[:instance].time
# Objective function terms for production costs
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
# Production limit
# Equation (18) in Kneuven et al. (2020)
# as \bar{p}_g(t) \le \bar{P}_g u_g(t)
# amk: this is a weaker version of (20) and (21) in Kneuven et al. (2020)
# but keeping it here in case those are not present
power_diff = max(g.max_power[t], 0.0) - max(g.min_power[t], 0.0)
if power_diff < 1e-7
power_diff = 0.0
end
eq_prod_limit[gn, t] = @constraint(
model,
prod_above[gn, t] + reserve[gn, t] <= power_diff * is_on[gn, t]
)
end
end
function _add_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
reserve = _init(model, :reserve)
reserve_shortfall = _init(model, :reserve_shortfall)
for t in 1:model[:instance].time
if g.provides_spinning_reserves[t]
reserve[g.name, t] = @variable(model, lower_bound = 0)
else
reserve[g.name, t] = 0.0
end
reserve_shortfall[t] =
(model[:instance].shortfall_penalty[t] >= 0) ?
@variable(model, lower_bound = 0) : 0.0
end
return
end
@@ -99,7 +90,22 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
return
end
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
"""
_add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
Creates startup/shutdown limit constraints below based on variables `Gar1962.StatusVars`, `prod_above` from `Gar1962.ProdVars`, and `reserve`.
Constraints
---
* :eq_startup_limit
* :eq_shutdown_limit
"""
function _add_startup_shutdown_limit_eqs!(
model::JuMP.Model,
g::Unit,
formulation_status_vars::Gar1962.StatusVars,
formulation_prod_vars::Gar1962.ProdVars,
)::Nothing
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
eq_startup_limit = _init(model, :eq_startup_limit)
is_on = model[:is_on]
@@ -118,8 +124,15 @@ function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
)
# Shutdown limit
if g.initial_power > g.shutdown_limit
eq_shutdown_limit[g.name, 0] =
@constraint(model, switch_off[g.name, 1] <= 0)
# TODO check what happens with these variables when exporting the model
# Generator producing too much to be turned off in the first time period
# (can a binary variable have bounds x = 0?)
if formulation_status_vars.fix_vars_via_constraint
eq_shutdown_limit[g.name, 0] =
@constraint(model, model[:switch_off][g.name, 1] <= 0.0)
else
fix(model[:switch_off][g.name, 1], 0.0; force = true)
end
end
if t < T
eq_shutdown_limit[g.name, t] = @constraint(
@@ -134,56 +147,6 @@ function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
return
end
function _add_status_vars!(model::JuMP.Model, g::Unit)::Nothing
is_on = _init(model, :is_on)
switch_on = _init(model, :switch_on)
switch_off = _init(model, :switch_off)
for t in 1:model[:instance].time
if g.must_run[t]
is_on[g.name, t] = 1.0
switch_on[g.name, t] = (t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
switch_off[g.name, t] = 0.0
else
is_on[g.name, t] = @variable(model, binary = true)
switch_on[g.name, t] = @variable(model, binary = true)
switch_off[g.name, t] = @variable(model, binary = true)
end
end
return
end
function _add_status_eqs!(model::JuMP.Model, g::Unit)::Nothing
eq_binary_link = _init(model, :eq_binary_link)
eq_switch_on_off = _init(model, :eq_switch_on_off)
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:model[:instance].time
if !g.must_run[t]
# Link binary variables
if t == 1
eq_binary_link[g.name, t] = @constraint(
model,
is_on[g.name, t] - _is_initially_on(g) ==
switch_on[g.name, t] - switch_off[g.name, t]
)
else
eq_binary_link[g.name, t] = @constraint(
model,
is_on[g.name, t] - is_on[g.name, t-1] ==
switch_on[g.name, t] - switch_off[g.name, t]
)
end
# Cannot switch on and off at the same time
eq_switch_on_off[g.name, t] = @constraint(
model,
switch_on[g.name, t] + switch_off[g.name, t] <= 1
)
end
end
return
end
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
@@ -287,11 +250,5 @@ function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
model[:is_on][g.name, t],
g.min_power[t],
)
# Add to reserves expression
add_to_expression!(
model[:expr_reserve][g.bus.name, t],
model[:reserve][g.name, t],
1.0,
)
end
end

View File

@@ -51,6 +51,12 @@ function solution(model::JuMP.Model)::OrderedDict
sol["Switch on"] = timeseries(model[:switch_on], instance.units)
sol["Switch off"] = timeseries(model[:switch_off], instance.units)
sol["Reserve (MW)"] = timeseries(model[:reserve], instance.units)
sol["Reserve shortfall (MW)"] = OrderedDict(
t =>
(instance.shortfall_penalty[t] >= 0) ?
round(value(model[:reserve_shortfall][t]), digits = 5) : 0.0 for
t in 1:instance.time
)
sol["Net injection (MW)"] =
timeseries(model[:net_injection], instance.buses)
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses)

View File

@@ -0,0 +1,53 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Distributions
function randomize_unit_costs!(
instance::UnitCommitmentInstance;
distribution = Uniform(0.95, 1.05),
)::Nothing
for unit in instance.units
α = rand(distribution)
unit.min_power_cost *= α
for k in unit.cost_segments
k.cost *= α
end
for s in unit.startup_categories
s.cost *= α
end
end
return
end
function randomize_load_distribution!(
instance::UnitCommitmentInstance;
distribution = Uniform(0.90, 1.10),
)::Nothing
α = rand(distribution, length(instance.buses))
for t in 1:instance.time
total = sum(bus.load[t] for bus in instance.buses)
den = sum(
bus.load[t] / total * α[i] for
(i, bus) in enumerate(instance.buses)
)
for (i, bus) in enumerate(instance.buses)
bus.load[t] *= α[i] / den
end
end
return
end
function randomize_peak_load!(
instance::UnitCommitmentInstance;
distribution = Uniform(0.925, 1.075),
)::Nothing
α = rand(distribution)
for bus in instance.buses
bus.load *= α
end
return
end
export randomize_unit_costs!, randomize_load_distribution!, randomize_peak_load!

View File

@@ -5,12 +5,20 @@
using PackageCompiler
using DataStructures
using Distributions
using JSON
using JuMP
using MathOptInterface
using SparseArrays
pkg = [:DataStructures, :JSON, :JuMP, :MathOptInterface, :SparseArrays]
pkg = [
:DataStructures,
:Distributions,
:JSON,
:JuMP,
:MathOptInterface,
:SparseArrays,
]
@info "Building system image..."
create_sysimage(

View File

@@ -208,12 +208,8 @@ function _validate_units(instance, solution; tol = 0.01)
break
end
end
if t == time_down + 1
initial_down = unit.min_downtime
if unit.initial_status < 0
initial_down = -unit.initial_status
end
time_down += initial_down
if (t == time_down + 1) && (unit.initial_status < 0)
time_down -= unit.initial_status
end
# Calculate startup costs
@@ -246,14 +242,6 @@ function _validate_units(instance, solution; tol = 0.01)
break
end
end
if t == time_up + 1
initial_up = unit.min_uptime
if unit.initial_status > 0
initial_up = unit.initial_status
end
time_up += initial_up
end
if (t == time_up + 1) && (unit.initial_status > 0)
time_up += unit.initial_status
end
@@ -336,11 +324,16 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
# Verify spinning reserves
reserve =
sum(solution["Reserve (MW)"][g.name][t] for g in instance.units)
if reserve < instance.reserves.spinning[t] - tol
reserve_shortfall =
(instance.shortfall_penalty[t] >= 0) ?
solution["Reserve shortfall (MW)"][t] : 0
if reserve + reserve_shortfall < instance.reserves.spinning[t] - tol
@error @sprintf(
"Insufficient spinning reserves at time %d (%.2f should be %.2f)",
"Insufficient spinning reserves at time %d (%.2f + %.2f should be %.2f)",
t,
reserve,
reserve_shortfall,
instance.reserves.spinning[t],
)
err_count += 1

View File

@@ -3,6 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment
using JuMP
import UnitCommitment:
ArrCon2000,
CarArr2006,
@@ -11,17 +12,55 @@ import UnitCommitment:
Gar1962,
KnuOstWat2018,
MorLatRam2013,
PanGua2016
PanGua2016,
XavQiuWanThi2019
function _test(formulation::Formulation)::Nothing
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
UnitCommitment.build_model(instance = instance, formulation = formulation) # should not crash
if ENABLE_LARGE_TESTS
using Gurobi
end
function _small_test(formulation::Formulation)::Nothing
instances = ["matpower/case118/2017-02-01", "test/case14"]
for instance in instances
# Should not crash
UnitCommitment.build_model(
instance = UnitCommitment.read_benchmark(instance),
formulation = formulation,
)
end
return
end
function _large_test(formulation::Formulation)::Nothing
instances = ["pglib-uc/ca/Scenario400_reserves_1"]
for instance in instances
instance = UnitCommitment.read_benchmark(instance)
model = UnitCommitment.build_model(
instance = instance,
formulation = formulation,
optimizer = Gurobi.Optimizer,
)
UnitCommitment.optimize!(
model,
XavQiuWanThi2019.Method(two_phase_gap = false, gap_limit = 0.1),
)
solution = UnitCommitment.solution(model)
@test UnitCommitment.validate(instance, solution)
end
return
end
function _test(formulation::Formulation)::Nothing
_small_test(formulation)
if ENABLE_LARGE_TESTS
_large_test(formulation)
end
end
@testset "formulations" begin
_test(Formulation())
_test(Formulation(ramping = ArrCon2000.Ramping()))
_test(Formulation(ramping = DamKucRajAta2016.Ramping()))
# _test(Formulation(ramping = DamKucRajAta2016.Ramping()))
_test(
Formulation(
ramping = MorLatRam2013.Ramping(),

View File

@@ -7,6 +7,8 @@ using UnitCommitment
UnitCommitment._setup_logger()
const ENABLE_LARGE_TESTS = ("UCJL_LARGE_TESTS" in keys(ENV))
@testset "UnitCommitment" begin
include("usage.jl")
@testset "import" begin
@@ -26,6 +28,7 @@ UnitCommitment._setup_logger()
@testset "transform" begin
include("transform/initcond_test.jl")
include("transform/slice_test.jl")
include("transform/randomize_test.jl")
end
@testset "validation" begin
include("validation/repair_test.jl")

View File

@@ -0,0 +1,43 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, JuMP
_get_instance() = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
_total_load(instance) = sum(b.load[1] for b in instance.buses)
@testset "randomize_unit_costs!" begin
instance = _get_instance()
unit = instance.units[10]
prev_min_power_cost = unit.min_power_cost
prev_prod_cost = unit.cost_segments[1].cost
prev_startup_cost = unit.startup_categories[1].cost
randomize_unit_costs!(instance)
@test prev_min_power_cost != unit.min_power_cost
@test prev_prod_cost != unit.cost_segments[1].cost
@test prev_startup_cost != unit.startup_categories[1].cost
end
@testset "randomize_load_distribution!" begin
instance = _get_instance()
bus = instance.buses[1]
prev_load = instance.buses[1].load[1]
prev_total_load = _total_load(instance)
randomize_load_distribution!(instance)
curr_total_load = _total_load(instance)
@test prev_load != instance.buses[1].load[1]
@test abs(prev_total_load - curr_total_load) < 1e-3
end
@testset "randomize_peak_load!" begin
instance = _get_instance()
bus = instance.buses[1]
prev_total_load = _total_load(instance)
prev_share = bus.load[1] / prev_total_load
randomize_peak_load!(instance)
curr_total_load = _total_load(instance)
curr_share = bus.load[1] / prev_total_load
@test curr_total_load != prev_total_load
@test abs(curr_share - prev_share) < 1e-3
end