Compare commits

...

45 Commits

Author SHA1 Message Date
1afd71b97b Make test/ a standalone project 2023-05-19 15:27:54 -05:00
6db2ca76e8 Fix formatting 2023-05-19 10:40:25 -05:00
4adb3344ac Profiled units: minor changes 2023-05-19 10:38:35 -05:00
Jun He
316d0bdf5a added profiled units in slice 2023-05-05 14:48:42 -04:00
Jun He
33f8ec26d5 renamed capacity to max_power 2023-05-05 14:48:15 -04:00
Jun He
41790db448 new test case gz file 2023-04-22 14:09:40 -04:00
Jun He
baf529a15d added commitment status to thermal 2023-04-22 14:02:03 -04:00
Jun He
b71a1c3d5f Updated randomize, validate and initial conditions 2023-04-07 16:42:03 -04:00
Jun He
bea42d174c Reformatted code 2023-04-06 16:21:58 -04:00
Jun He
896ef0f3e3 Added min power, fixed typo 2023-04-06 16:16:30 -04:00
Jun He
cb7f9e3b27 Added minimum power to profiled generator 2023-04-06 16:16:04 -04:00
319a787904 Merge pull request #26 from hejun0524/dev
LMP Methods & Profiled Units
2023-04-06 13:11:04 -05:00
b1c963f217 Rename 'production' to 'thermal production' 2023-04-04 15:59:41 -05:00
19534a128f Rename Unit to ThermalUnit 2023-04-04 15:40:44 -05:00
Jun He
51f6aa9a80 Create case14-profiled.json.gz 2023-03-31 15:19:46 -04:00
Jun He
f2c0388cac Updated the docs 2023-03-31 15:11:59 -04:00
Jun He
3564358a63 Re-formatted the codes 2023-03-31 15:11:47 -04:00
Jun He
b2ed0f67c1 Added the profiled units 2023-03-31 15:11:37 -04:00
Jun He
2a6c206e08 updated LMP for UC scenario 2023-03-30 23:19:24 -04:00
Jun He
30a4284119 Merge remote-tracking branch 'upstream/dev' into dev 2023-03-30 14:35:09 -04:00
Jun He
71ed55cb40 Formatted codes on the LMP dev branch 2023-03-30 14:30:10 -04:00
Jun He
0b95df25ec typo fix in generator json example 2023-03-24 10:56:41 -04:00
Jun He
5f5c8b66eb more condition checking on AELMP 2023-03-19 14:28:39 -04:00
52f1ff9a27 Merge pull request #25 from oyurdakul/stochastic-extension
stochastic extension w/ scenarios
2023-03-16 12:10:13 -05:00
414128cc0b Correct optimize!, add stochastic test case 2023-03-16 12:03:40 -05:00
20939dc4b7 Minor edits to instance/structs.jl 2023-03-16 10:43:30 -05:00
d8741f04a0 Minor edits to instance/read.jl 2023-03-16 10:38:08 -05:00
3b6d810884 Remove duplicate format.jl file 2023-03-16 10:24:31 -05:00
204c5d900f Remove unused dependency 2023-03-16 10:23:40 -05:00
cb9334c0a3 Minor changes to tests 2023-03-16 10:21:31 -05:00
31e0613134 Remove unused dependency & debug statements 2023-03-16 10:09:01 -05:00
4827c29230 Add Jun to authors 2023-03-15 12:41:09 -05:00
19e84bac07 Reformat source code 2023-03-15 12:27:43 -05:00
d7d2a3fcf6 AELMP: Convert warnings into errors; update docstrings 2023-03-15 12:23:18 -05:00
784ebfa199 ConventionalLMP: turn warnings into errors, remove some inline comments 2023-03-15 12:15:57 -05:00
d2e11eee42 Flatten dir structure, update docstrings 2023-03-15 12:08:35 -05:00
34ca6952fb Revise docs 2023-03-15 11:34:50 -05:00
Jun He
bc3aee38f8 modified the tests for LMP and AELMP 2023-03-08 13:35:33 -05:00
Jun He
415732f0ec updated the doc with LMP and AELMP 2023-03-08 13:34:10 -05:00
Jun He
5c91dc2ac9 re-designed the LMP methods
The LMP and AELMP methods are re-designed to be dependent on the instance object instead of input files, and to have a unified API style for purposes of flexibility and consistency.
2023-03-08 13:33:47 -05:00
oyurdakul
ad4a754d63 read and repair scenario 2023-03-06 17:07:54 -06:00
oyurdakul
481f5a904c read and repair scenario 2023-03-06 17:03:34 -06:00
oyurdakul
7e8a2ee026 stochastic extension 2023-02-22 12:44:46 -06:00
oyurdakul
c95b01dadf stochastic extension w/ scenarios 2023-02-08 23:46:10 -06:00
Feng
8fc84412eb Update README.md
minor corrections on grammer.
2022-08-19 11:03:21 -05:00
87 changed files with 2913 additions and 1789 deletions

View File

@@ -1,4 +1,4 @@
name: Tests name: Build & Test
on: on:
push: push:
pull_request: pull_request:
@@ -6,19 +6,30 @@ on:
- cron: '45 10 * * *' - cron: '45 10 * * *'
jobs: jobs:
test: test:
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }}
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
strategy: strategy:
matrix: matrix:
julia-version: ['1.6', '1.7'] version: ['1.6', '1.7', '1.8', '1.9']
julia-arch: [x64] os:
os: [ubuntu-latest, windows-latest, macOS-latest] - ubuntu-latest
exclude: arch:
- os: macOS-latest - x64
julia-arch: x86
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v2
- uses: julia-actions/setup-julia@latest - uses: julia-actions/setup-julia@v1
with: with:
version: ${{ matrix.julia-version }} version: ${{ matrix.version }}
- uses: julia-actions/julia-buildpkg@latest arch: ${{ matrix.arch }}
- uses: julia-actions/julia-runtest@latest - name: Run tests
shell: julia --color=yes --project=test {0}
run: |
using Pkg
Pkg.develop(path=".")
Pkg.update()
using UnitCommitmentT
try
runtests()
catch
exit(1)
end

View File

@@ -4,20 +4,8 @@
VERSION := 0.3 VERSION := 0.3
clean:
rm -rfv build Manifest.toml test/Manifest.toml deps/formatter/build deps/formatter/Manifest.toml
docs: docs:
cd docs; julia --project=. make.jl; cd .. cd docs; julia --project=. make.jl; cd ..
rsync -avP --delete-after docs/build/ ../docs/$(VERSION)/ rsync -avP --delete-after docs/build/ ../docs/$(VERSION)/
format: .PHONY: docs
cd deps/formatter; ../../juliaw format.jl
test: test/Manifest.toml
./juliaw test/runtests.jl
test/Manifest.toml: test/Project.toml
julia --project=test -e "using Pkg; Pkg.instantiate()"
.PHONY: docs test format install-deps

View File

@@ -97,11 +97,12 @@ UnitCommitment.write("/tmp/output.json", solution)
* **Alinson S. Xavier** (Argonne National Laboratory) * **Alinson S. Xavier** (Argonne National Laboratory)
* **Aleksandr M. Kazachkov** (University of Florida) * **Aleksandr M. Kazachkov** (University of Florida)
* **Ogün Yurdakul** (Technische Universität Berlin) * **Ogün Yurdakul** (Technische Universität Berlin)
* **Jun He** (Purdue University)
* **Feng Qiu** (Argonne National Laboratory) * **Feng Qiu** (Argonne National Laboratory)
## Acknowledgments ## Acknowledgments
* We would like to **Yonghong Chen** (Midcontinent Independent System Operator), **Feng Pan** (Pacific Northwest National Laboratory) for valuable feedback on early versions of this package. * We would like to thank **Yonghong Chen** (Midcontinent Independent System Operator), **Feng Pan** (Pacific Northwest National Laboratory) for valuable feedback on early versions of this package.
* Based upon work supported by **Laboratory Directed Research and Development** (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 * Based upon work supported by **Laboratory Directed Research and Development** (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

View File

@@ -1,5 +0,0 @@
[deps]
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
[compat]
JuliaFormatter = "0.14.4"

View File

@@ -1,9 +0,0 @@
using JuliaFormatter
format(
[
"../../src",
"../../test",
"../../benchmark/run.jl",
],
verbose=true,
)

View File

@@ -1,4 +1,5 @@
[deps] [deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe" Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877" UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877"

View File

@@ -1,4 +1,4 @@
using Documenter, UnitCommitment using Documenter, UnitCommitment, JuMP
makedocs( makedocs(
sitename="UnitCommitment.jl", sitename="UnitCommitment.jl",

View File

@@ -12,6 +12,20 @@ UnitCommitment.validate
UnitCommitment.write UnitCommitment.write
``` ```
## Locational Marginal Prices
### Conventional LMPs
```@docs
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.ConventionalLMP)
```
### Approximated Extended LMPs
```@docs
UnitCommitment.AELMP
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.AELMP)
```
## Modify instance ## Modify instance
```@docs ```@docs

View File

@@ -70,11 +70,17 @@ This section describes the characteristics of each bus in the system.
### Generators ### Generators
This section describes all generators in the system, including thermal units, renewable units and virtual units. This section describes all generators in the system. Two types of units can be specified:
- **Thermal units:** Units that produce power by converting heat into electrical energy, such as coal and oil power plants. These units use a more complex model, with binary decision variables, and various constraints to enforce ramp rates and minimum up/down time.
- **Profiled units:** Simplified model for units that do not require the constraints mentioned above, only a maximum and minimum power output for each time period. Typically used for renewables and hydro.
#### Thermal Units
| Key | Description | Default | Time series? | Key | Description | Default | Time series?
| :------------------------ | :------------------------------------------------| ------- | :-----------: | :------------------------ | :------------------------------------------------| ------- | :-----------:
| `Bus` | Identifier of the bus where this generator is located (string). | Required | N | `Bus` | Identifier of the bus where this generator is located (string). | Required | N
| `Type` | Type of the generator (string). For thermal generators, this must be `Thermal`. | Required | N
| `Production cost curve (MW)` and `Production cost curve ($)` | Parameters describing the piecewise-linear production costs. See below for more details. | Required | Y | `Production cost curve (MW)` and `Production cost curve ($)` | Parameters describing the piecewise-linear production costs. See below for more details. | Required | Y
| `Startup costs ($)` and `Startup delays (h)` | Parameters describing how much it costs to start the generator after it has been shut down for a certain amount of time. If `Startup costs ($)` and `Startup delays (h)` are set to `[300.0, 400.0]` and `[1, 4]`, for example, and the generator is shut down at time `00:00` (h:min), then it costs \$300 to start up the generator at any time between `01:00` and `03:59`, and \$400 to start the generator at time `04:00` or any time after that. The number of startup cost points is unlimited, and may be different for each generator. Startup delays must be strictly increasing and the first entry must equal `Minimum downtime (h)`. | `[0.0]` and `[1]` | N | `Startup costs ($)` and `Startup delays (h)` | Parameters describing how much it costs to start the generator after it has been shut down for a certain amount of time. If `Startup costs ($)` and `Startup delays (h)` are set to `[300.0, 400.0]` and `[1, 4]`, for example, and the generator is shut down at time `00:00` (h:min), then it costs \$300 to start up the generator at any time between `01:00` and `03:59`, and \$400 to start the generator at time `04:00` or any time after that. The number of startup cost points is unlimited, and may be different for each generator. Startup delays must be strictly increasing and the first entry must equal `Minimum downtime (h)`. | `[0.0]` and `[1]` | N
| `Minimum uptime (h)` | Minimum amount of time the generator must stay operational after starting up (in hours). For example, if the generator starts up at time `00:00` (h:min) and `Minimum uptime (h)` is set to 4, then the generator can only shut down at time `04:00`. | `1` | N | `Minimum uptime (h)` | Minimum amount of time the generator must stay operational after starting up (in hours). For example, if the generator starts up at time `00:00` (h:min) and `Minimum uptime (h)` is set to 4, then the generator can only shut down at time `04:00`. | `1` | N
@@ -87,6 +93,17 @@ This section describes all generators in the system, including thermal units, re
| `Initial power (MW)` | Amount of power the generator at time step `-1`, immediately before the planning horizon starts. | Required | N | `Initial power (MW)` | Amount of power the generator at time step `-1`, immediately before the planning horizon starts. | Required | N
| `Must run?` | If `true`, the generator should be committed, even if that is not economical (Boolean). | `false` | Y | `Must run?` | If `true`, the generator should be committed, even if that is not economical (Boolean). | `false` | Y
| `Reserve eligibility` | List of reserve products this generator is eligibe to provide. By default, the generator is not eligible to provide any reserves. | `[]` | N | `Reserve eligibility` | List of reserve products this generator is eligibe to provide. By default, the generator is not eligible to provide any reserves. | `[]` | N
| `Commitment status` | List of commitment status over the time horizon. At time `t`, if `true`, the generator must be commited at that time period; if `false`, the generator must not be commited at that time period. If `null` at time `t`, the generator's commitment status is then decided by the model. By default, the status is a list of `null` values. | `null` | Y
#### Profiled Units
| Key | Description | Default | Time series?
| :---------------- | :------------------------------------------------ | :------: | :------------:
| `Bus` | Identifier of the bus where this generator is located (string). | Required | N
| `Type` | Type of the generator (string). For profiled generators, this must be `Profiled`. | Required | N
| `Cost ($/MW)` | Cost incurred for serving each MW of power by this generator. | Required | Y
| `Minimum power (MW)` | Minimum amount of power this generator may supply. | `0.0` | Y
| `Maximum power (MW)` | Maximum amount of power this generator may supply. | Required | Y
#### Production costs and limits #### Production costs and limits
@@ -115,6 +132,7 @@ Note that this curve also specifies the production limits. Specifically, the fir
"Generators": { "Generators": {
"gen1": { "gen1": {
"Bus": "b1", "Bus": "b1",
"Type": "Thermal",
"Production cost curve (MW)": [100.0, 110.0, 130.0, 135.0], "Production cost curve (MW)": [100.0, 110.0, 130.0, 135.0],
"Production cost curve ($)": [1400.0, 1600.0, 2200.0, 2400.0], "Production cost curve ($)": [1400.0, 1600.0, 2200.0, 2400.0],
"Startup costs ($)": [300.0, 400.0], "Startup costs ($)": [300.0, 400.0],
@@ -126,14 +144,26 @@ Note that this curve also specifies the production limits. Specifically, the fir
"Minimum downtime (h)": 4, "Minimum downtime (h)": 4,
"Minimum uptime (h)": 4, "Minimum uptime (h)": 4,
"Initial status (h)": 12, "Initial status (h)": 12,
"Initial power (MW)": 115,
"Must run?": false, "Must run?": false,
"Reserve eligibility": ["r1"], "Reserve eligibility": ["r1"]
}, },
"gen2": { "gen2": {
"Bus": "b5", "Bus": "b5",
"Type": "Thermal",
"Production cost curve (MW)": [0.0, [10.0, 8.0, 0.0, 3.0]], "Production cost curve (MW)": [0.0, [10.0, 8.0, 0.0, 3.0]],
"Production cost curve ($)": [0.0, 0.0], "Production cost curve ($)": [0.0, 0.0],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": ["r1", "r2"], "Reserve eligibility": ["r1", "r2"],
"Commitment status": [true, false, null, true]
},
"gen3": {
"Bus": "b6",
"Type": "Profiled",
"Minimum power (MW)": 10.0,
"Maximum power (MW)": 120.0,
"Cost ($/MW)": 100.0
} }
} }
} }

View File

@@ -20,6 +20,7 @@ Depth = 3
* **Alinson S. Xavier** (Argonne National Laboratory) * **Alinson S. Xavier** (Argonne National Laboratory)
* **Aleksandr M. Kazachkov** (University of Florida) * **Aleksandr M. Kazachkov** (University of Florida)
* **Ogün Yurdakul** (Technische Universität Berlin) * **Ogün Yurdakul** (Technische Universität Berlin)
* **Jun He** (Purdue University)
* **Feng Qiu** (Argonne National Laboratory) * **Feng Qiu** (Argonne National Laboratory)
## Acknowledgments ## Acknowledgments

View File

@@ -8,6 +8,8 @@ Decision variables
### Generators ### Generators
#### Thermal Units
Name | Symbol | Description | Unit Name | Symbol | Description | Unit
:-----|:--------:|:-------------|:------: :-----|:--------:|:-------------|:------:
`is_on[g,t]` | $u_{g}(t)$ | True if generator `g` is on at time `t`. | Binary `is_on[g,t]` | $u_{g}(t)$ | True if generator `g` is on at time `t`. | Binary
@@ -19,6 +21,13 @@ Name | Symbol | Description | Unit
`startup[g,t,s]` | $\delta^s_g(t)$ | True if generator `g` switches on at time `t` incurring start-up costs from start-up category `s`. | Binary `startup[g,t,s]` | $\delta^s_g(t)$ | True if generator `g` switches on at time `t` incurring start-up costs from start-up category `s`. | Binary
#### Profiled Units
Name | Symbol | Description | Unit
:-----|:------:|:-------------|:------:
`prod_profiled[s,t]` | $p^{\dagger}_{g}(t)$ | Amount of power produced by profiled unit `g` at time `t`. | MW
### Buses ### Buses
Name | Symbol | Description | Unit Name | Symbol | Description | Unit

View File

@@ -58,10 +58,7 @@ using UnitCommitment
instance = UnitCommitment.read_benchmark("matpower/case3375wp/2017-02-01") instance = UnitCommitment.read_benchmark("matpower/case3375wp/2017-02-01")
``` ```
Advanced usage ## Customizing the formulation
--------------
### Customizing the formulation
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example. By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
@@ -94,7 +91,7 @@ model = UnitCommitment.build_model(
) )
``` ```
### Generating initial conditions ## Generating initial conditions
When creating random unit commitment instances for benchmark purposes, it is often hard to compute, in advance, sensible initial conditions for all generators. Setting initial conditions naively (for example, making all generators initially off and producing no power) can easily cause the instance to become infeasible due to excessive ramping. Initial conditions can also make it hard to modify existing instances. For example, increasing the system load without carefully modifying the initial conditions may make the problem infeasible or unrealistically challenging to solve. When creating random unit commitment instances for benchmark purposes, it is often hard to compute, in advance, sensible initial conditions for all generators. Setting initial conditions naively (for example, making all generators initially off and producing no power) can easily cause the instance to become infeasible due to excessive ramping. Initial conditions can also make it hard to modify existing instances. For example, increasing the system load without carefully modifying the initial conditions may make the problem infeasible or unrealistically challenging to solve.
@@ -122,7 +119,7 @@ UnitCommitment.optimize!(model)
The function `generate_initial_conditions!` may return different initial conditions after each call, even if the same instance and the same optimizer is provided. The particular algorithm may also change in a future version of UC.jl. For these reasons, it is recommended that you generate initial conditions exactly once for each instance and store them for later use. The function `generate_initial_conditions!` may return different initial conditions after each call, even if the same instance and the same optimizer is provided. The particular algorithm may also change in a future version of UC.jl. For these reasons, it is recommended that you generate initial conditions exactly once for each instance and store them for later use.
### Verifying solutions ## Verifying solutions
When developing new formulations, it is very easy to introduce subtle errors in the model that result in incorrect solutions. To help with this, UC.jl includes a utility function that verifies if a given solution is feasible, and, if not, prints all the validation errors it found. The implementation of this function is completely independent from the implementation of the optimization model, and therefore can be used to validate it. The function can also be used to verify solutions produced by other optimization packages, as long as they follow the [UC.jl data format](format.md). When developing new formulations, it is very easy to introduce subtle errors in the model that result in incorrect solutions. To help with this, UC.jl includes a utility function that verifies if a given solution is feasible, and, if not, prints all the validation errors it found. The implementation of this function is completely independent from the implementation of the optimization model, and therefore can be used to validate it. The function can also be used to verify solutions produced by other optimization packages, as long as they follow the [UC.jl data format](format.md).
@@ -139,3 +136,91 @@ solution = JSON.parsefile("solution.json")
# Validate solution and print validation errors # Validate solution and print validation errors
UnitCommitment.validate(instance, solution) UnitCommitment.validate(instance, solution)
``` ```
## Computing Locational Marginal Prices
Locational marginal prices (LMPs) refer to the cost of supplying electricity at a particular location of the network. Multiple methods for computing LMPs have been proposed in the literature. UnitCommitment.jl implements two commonly-used methods: conventional LMPs and Approximated Extended LMPs (AELMPs). To compute LMPs for a given unit commitment instance, the `compute_lmp` function can be used, as shown in the examples below. The function accepts three arguments -- a solved SCUC model, an LMP method, and a linear optimizer -- and it returns a dictionary mapping `(bus_name, time)` to the marginal price.
!!! warning
Most mixed-integer linear optimizers, such as `HiGHS`, `Gurobi` and `CPLEX` can be used with `compute_lmp`, with the notable exception of `Cbc`, which does not support dual value evaluations. If using `Cbc`, please provide `Clp` as the linear optimizer.
### Conventional LMPs
LMPs are conventionally computed by: (1) solving the SCUC model, (2) fixing all binary variables to their optimal values, and (3) re-solving the resulting linear programming model. In this approach, the LMPs are defined as the dual variables' values associated with the net injection constraints. The example below shows how to compute conventional LMPs for a given unit commitment instance. First, we build and optimize the SCUC model. Then, we call the `compute_lmp` function, providing as the second argument `ConventionalLMP()`.
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: ConventionalLMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2018-01-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the LMPs using the conventional method
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
# Access the LMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
@show lmp["s1","b1", 1]
```
### Approximate Extended LMPs
Approximate Extended LMPs (AELMPs) are an alternative method to calculate locational marginal prices which attemps to minimize uplift payments. The method internally works by modifying the instance data in three ways: (1) it sets the minimum power output of each generator to zero, (2) it averages the start-up cost over the offer blocks for each generator, and (3) it relaxes all integrality constraints. To compute AELMPs, as shown in the example below, we call `compute_lmp` and provide `AELMP()` as the second argument.
This method has two configurable parameters: `allow_offline_participation` and `consider_startup_costs`. If `allow_offline_participation = true`, then offline generators are allowed to participate in the pricing. If instead `allow_offline_participation = false`, offline generators are not allowed and therefore are excluded from the system. A solved UC model is optional if offline participation is allowed, but is required if not allowed. The method forces offline participation to be allowed if the UC model supplied by the user is not solved. For the second field, If `consider_startup_costs = true`, then start-up costs are integrated and averaged over each unit production; otherwise the production costs stay the same. By default, both fields are set to `true`.
!!! warning
This approximation method is still under active research, and has several limitations. The implementation provided in the package is based on MISO Phase I only. It only supports fast start resources. More specifically, the minimum up/down time of all generators must be 1, the initial power of all generators must be 0, and the initial status of all generators must be negative. The method does not support time-varying start-up costs. The method does not support multiple scenarios. If offline participation is not allowed, AELMPs treats an asset to be offline if it is never on throughout all time periods.
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: AELMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the AELMPs
aelmp = UnitCommitment.compute_lmp(
model,
AELMP(
allow_offline_participation = false,
consider_startup_costs = true
),
optimizer = HiGHS.Optimizer
)
# Access the AELMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
# Note: although scenario is supported, the query still keeps the scenario keys for consistency.
@show aelmp["s1", "b1", 1]
```

75
juliaw
View File

@@ -1,75 +0,0 @@
#!/bin/bash
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
if [ ! -e Project.toml ]; then
echo "juliaw: Project.toml not found"
exit 1
fi
if [ ! -e Manifest.toml ]; then
julia --project=. -e 'using Pkg; Pkg.instantiate()' || exit 1
fi
if [ ! -e build/sysimage.so -o Project.toml -nt build/sysimage.so ]; then
echo "juliaw: rebuilding system image..."
# Generate temporary project folder
rm -rf $HOME/.juliaw
mkdir -p $HOME/.juliaw/src
cp Project.toml Manifest.toml $HOME/.juliaw
NAME=$(julia -e 'using TOML; toml = TOML.parsefile("Project.toml"); "name" in keys(toml) && print(toml["name"])')
if [ ! -z $NAME ]; then
cat > $HOME/.juliaw/src/$NAME.jl << EOF
module $NAME
end
EOF
fi
# Add PackageCompiler dependencies to temporary project
julia --project=$HOME/.juliaw -e 'using Pkg; Pkg.add(["PackageCompiler", "TOML", "Logging"])'
# Generate system image scripts
cat > $HOME/.juliaw/sysimage.jl << EOF
using PackageCompiler
using TOML
using Logging
Logging.disable_logging(Logging.Info)
mkpath("$PWD/build")
println("juliaw: generating precompilation statements...")
run(\`julia --project="$PWD" --trace-compile="$PWD"/build/precompile.jl \$(ARGS)\`)
println("juliaw: finding dependencies...")
project = TOML.parsefile("Project.toml")
manifest = TOML.parsefile("Manifest.toml")
deps = Symbol[]
for dep in keys(project["deps"])
if dep in keys(manifest)
# Up to Julia 1.6
dep_entry = manifest[dep][1]
else
# Julia 1.7+
dep_entry = manifest["deps"][dep][1]
end
if "path" in keys(dep_entry)
println(" - \$(dep) [skip]")
else
println(" - \$(dep)")
push!(deps, Symbol(dep))
end
end
println("juliaw: building system image...")
create_sysimage(
deps,
precompile_statements_file = "$PWD/build/precompile.jl",
sysimage_path = "$PWD/build/sysimage.so",
)
EOF
julia --project=$HOME/.juliaw $HOME/.juliaw/sysimage.jl $*
else
julia --project=. --sysimage build/sysimage.so $*
fi

View File

@@ -4,9 +4,12 @@
module UnitCommitment module UnitCommitment
using Base: String
include("instance/structs.jl") include("instance/structs.jl")
include("model/formulations/base/structs.jl") include("model/formulations/base/structs.jl")
include("solution/structs.jl") include("solution/structs.jl")
include("lmp/structs.jl")
include("model/formulations/ArrCon2000/structs.jl") include("model/formulations/ArrCon2000/structs.jl")
include("model/formulations/CarArr2006/structs.jl") include("model/formulations/CarArr2006/structs.jl")
@@ -29,6 +32,7 @@ include("model/formulations/base/psload.jl")
include("model/formulations/base/sensitivity.jl") include("model/formulations/base/sensitivity.jl")
include("model/formulations/base/system.jl") include("model/formulations/base/system.jl")
include("model/formulations/base/unit.jl") include("model/formulations/base/unit.jl")
include("model/formulations/base/punit.jl")
include("model/formulations/CarArr2006/pwlcosts.jl") include("model/formulations/CarArr2006/pwlcosts.jl")
include("model/formulations/DamKucRajAta2016/ramp.jl") include("model/formulations/DamKucRajAta2016/ramp.jl")
include("model/formulations/Gar1962/pwlcosts.jl") include("model/formulations/Gar1962/pwlcosts.jl")
@@ -56,5 +60,7 @@ include("utils/log.jl")
include("utils/benchmark.jl") include("utils/benchmark.jl")
include("validation/repair.jl") include("validation/repair.jl")
include("validation/validate.jl") include("validation/validate.jl")
include("lmp/conventional.jl")
include("lmp/aelmp.jl")
end end

View File

@@ -18,9 +18,9 @@ function read_egret_solution(path::String)::OrderedDict
solution = OrderedDict() solution = OrderedDict()
is_on = solution["Is on"] = OrderedDict() is_on = solution["Is on"] = OrderedDict()
production = solution["Production (MW)"] = OrderedDict() production = solution["Thermal production (MW)"] = OrderedDict()
reserve = solution["Reserve (MW)"] = OrderedDict() reserve = solution["Reserve (MW)"] = OrderedDict()
production_cost = solution["Production cost (\$)"] = OrderedDict() production_cost = solution["Thermal production cost (\$)"] = OrderedDict()
startup_cost = solution["Startup cost (\$)"] = OrderedDict() startup_cost = solution["Startup cost (\$)"] = OrderedDict()
for (gen_name, gen_dict) in egret["elements"]["generator"] for (gen_name, gen_dict) in egret["elements"]["generator"]

View File

@@ -17,6 +17,7 @@ function _migrate(json)
end end
version = VersionNumber(version) version = VersionNumber(version)
version >= v"0.3" || _migrate_to_v03(json) version >= v"0.3" || _migrate_to_v03(json)
version >= v"0.4" || _migrate_to_v04(json)
return return
end end
@@ -36,3 +37,14 @@ function _migrate_to_v03(json)
end end
end end
end end
function _migrate_to_v04(json)
# Migrate thermal units
if json["Generators"] !== nothing
for (gen_name, gen) in json["Generators"]
if gen["Type"] === nothing
gen["Type"] = "Thermal"
end
end
end
end

View File

@@ -43,26 +43,76 @@ function read_benchmark(
return UnitCommitment.read(filename) return UnitCommitment.read(filename)
end end
function _repair_scenario_names_and_probabilities!(
scenarios::Vector{UnitCommitmentScenario},
path::Vector{String},
)::Nothing
total_weight = sum([sc.probability for sc in scenarios])
for (sc_path, sc) in zip(path, scenarios)
sc.name !== "" ||
(sc.name = first(split(last(split(sc_path, "/")), ".")))
sc.probability = (sc.probability / total_weight)
end
return
end
""" """
read(path::AbstractString)::UnitCommitmentInstance read(path::AbstractString)::UnitCommitmentInstance
Read instance from a file. The file may be gzipped. Read a deterministic test case from the given file. The file may be gzipped.
# Example # Example
```julia ```julia
instance = UnitCommitment.read("/path/to/input.json.gz") instance = UnitCommitment.read("s1.json.gz")
``` ```
""" """
function read(path::AbstractString)::UnitCommitmentInstance function read(path::String)::UnitCommitmentInstance
if endswith(path, ".gz") scenarios = Vector{UnitCommitmentScenario}()
return _read(gzopen(path)) scenario = _read_scenario(path)
else scenario.name = "s1"
return _read(open(path)) scenario.probability = 1.0
end scenarios = [scenario]
instance =
UnitCommitmentInstance(time = scenario.time, scenarios = scenarios)
return instance
end end
function _read(file::IO)::UnitCommitmentInstance """
read(path::Vector{String})::UnitCommitmentInstance
Read a stochastic unit commitment instance from the given files. Each file
describes a scenario. The files may be gzipped.
# Example
```julia
instance = UnitCommitment.read(["s1.json.gz", "s2.json.gz"])
```
"""
function read(paths::Vector{String})::UnitCommitmentInstance
scenarios = UnitCommitmentScenario[]
for p in paths
push!(scenarios, _read_scenario(p))
end
_repair_scenario_names_and_probabilities!(scenarios, paths)
instance =
UnitCommitmentInstance(time = scenarios[1].time, scenarios = scenarios)
return instance
end
function _read_scenario(path::String)::UnitCommitmentScenario
if endswith(path, ".gz")
scenario = _read(gzopen(path))
elseif endswith(path, ".json")
scenario = _read(open(path))
else
error("Unsupported input format")
end
return scenario
end
function _read(file::IO)::UnitCommitmentScenario
return _from_json( return _from_json(
JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)), JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)),
) )
@@ -77,14 +127,15 @@ function _read_json(path::String)::OrderedDict
return JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)) return JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing))
end end
function _from_json(json; repair = true) function _from_json(json; repair = true)::UnitCommitmentScenario
_migrate(json) _migrate(json)
units = Unit[] thermal_units = ThermalUnit[]
buses = Bus[] buses = Bus[]
contingencies = Contingency[] contingencies = Contingency[]
lines = TransmissionLine[] lines = TransmissionLine[]
loads = PriceSensitiveLoad[] loads = PriceSensitiveLoad[]
reserves = Reserve[] reserves = Reserve[]
profiled_units = ProfiledUnit[]
function scalar(x; default = nothing) function scalar(x; default = nothing)
x !== nothing || return default x !== nothing || return default
@@ -102,9 +153,14 @@ function _from_json(json; repair = true)
time_multiplier = 60 ÷ time_step time_multiplier = 60 ÷ time_step
T = time_horizon * time_multiplier T = time_horizon * time_multiplier
probability = json["Parameters"]["Scenario weight"]
probability !== nothing || (probability = 1)
scenario_name = json["Parameters"]["Scenario name"]
scenario_name !== nothing || (scenario_name = "")
name_to_bus = Dict{String,Bus}() name_to_bus = Dict{String,Bus}()
name_to_line = Dict{String,TransmissionLine}() name_to_line = Dict{String,TransmissionLine}()
name_to_unit = Dict{String,Unit}() name_to_unit = Dict{String,ThermalUnit}()
name_to_reserve = Dict{String,Reserve}() name_to_reserve = Dict{String,Reserve}()
function timeseries(x; default = nothing) function timeseries(x; default = nothing)
@@ -118,15 +174,6 @@ function _from_json(json; repair = true)
json["Parameters"]["Power balance penalty (\$/MW)"], json["Parameters"]["Power balance penalty (\$/MW)"],
default = [1000.0 for t in 1:T], default = [1000.0 for t in 1:T],
) )
# Penalty price for shortage in meeting system-wide flexiramp requirements
flexiramp_shortfall_penalty = timeseries(
json["Parameters"]["Flexiramp penalty (\$/MW)"],
default = [500.0 for t in 1:T],
)
shortfall_penalty = timeseries(
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
default = [-1.0 for t in 1:T],
)
# Read buses # Read buses
for (bus_name, dict) in json["Buses"] for (bus_name, dict) in json["Buses"]
@@ -134,8 +181,9 @@ function _from_json(json; repair = true)
bus_name, bus_name,
length(buses), length(buses),
timeseries(dict["Load (MW)"]), timeseries(dict["Load (MW)"]),
Unit[], ThermalUnit[],
PriceSensitiveLoad[], PriceSensitiveLoad[],
ProfiledUnit[],
) )
name_to_bus[bus_name] = bus name_to_bus[bus_name] = bus
push!(buses, bus) push!(buses, bus)
@@ -148,7 +196,7 @@ function _from_json(json; repair = true)
name = reserve_name, name = reserve_name,
type = lowercase(dict["Type"]), type = lowercase(dict["Type"]),
amount = timeseries(dict["Amount (MW)"]), amount = timeseries(dict["Amount (MW)"]),
units = [], thermal_units = [],
shortfall_penalty = scalar( shortfall_penalty = scalar(
dict["Shortfall penalty (\$/MW)"], dict["Shortfall penalty (\$/MW)"],
default = -1, default = -1,
@@ -161,90 +209,127 @@ function _from_json(json; repair = true)
# Read units # Read units
for (unit_name, dict) in json["Generators"] for (unit_name, dict) in json["Generators"]
# Read and validate unit type
unit_type = scalar(dict["Type"], default = nothing)
unit_type !== nothing || error("unit $unit_name has no type specified")
bus = name_to_bus[dict["Bus"]] bus = name_to_bus[dict["Bus"]]
# Read production cost curve if lowercase(unit_type) === "thermal"
K = length(dict["Production cost curve (MW)"]) # Read production cost curve
curve_mw = hcat( K = length(dict["Production cost curve (MW)"])
[timeseries(dict["Production cost curve (MW)"][k]) for k in 1:K]..., curve_mw = hcat(
) [
curve_cost = hcat( timeseries(dict["Production cost curve (MW)"][k]) for
[timeseries(dict["Production cost curve (\$)"][k]) for k in 1:K]..., k in 1:K
) ]...,
min_power = curve_mw[:, 1]
max_power = curve_mw[:, K]
min_power_cost = curve_cost[:, 1]
segments = CostSegment[]
for k in 2:K
amount = curve_mw[:, k] - curve_mw[:, k-1]
cost = (curve_cost[:, k] - curve_cost[:, k-1]) ./ amount
replace!(cost, NaN => 0.0)
push!(segments, CostSegment(amount, cost))
end
# Read startup costs
startup_delays = scalar(dict["Startup delays (h)"], default = [1])
startup_costs = scalar(dict["Startup costs (\$)"], default = [0.0])
startup_categories = StartupCategory[]
for k in 1:length(startup_delays)
push!(
startup_categories,
StartupCategory(
startup_delays[k] .* time_multiplier,
startup_costs[k],
),
) )
end curve_cost = hcat(
[
# Read reserve eligibility timeseries(dict["Production cost curve (\$)"][k]) for
unit_reserves = Reserve[] k in 1:K
if "Reserve eligibility" in keys(dict) ]...,
unit_reserves = )
[name_to_reserve[n] for n in dict["Reserve eligibility"]] min_power = curve_mw[:, 1]
end max_power = curve_mw[:, K]
min_power_cost = curve_cost[:, 1]
# Read and validate initial conditions segments = CostSegment[]
initial_power = scalar(dict["Initial power (MW)"], default = nothing) for k in 2:K
initial_status = scalar(dict["Initial status (h)"], default = nothing) amount = curve_mw[:, k] - curve_mw[:, k-1]
if initial_power === nothing cost = (curve_cost[:, k] - curve_cost[:, k-1]) ./ amount
initial_status === nothing || replace!(cost, NaN => 0.0)
error("unit $unit_name has initial status but no initial power") push!(segments, CostSegment(amount, cost))
else
initial_status !== nothing ||
error("unit $unit_name has initial power but no initial status")
initial_status != 0 ||
error("unit $unit_name has invalid initial status")
if initial_status < 0 && initial_power > 1e-3
error("unit $unit_name has invalid initial power")
end end
initial_status *= time_multiplier
end
unit = Unit( # Read startup costs
unit_name, startup_delays = scalar(dict["Startup delays (h)"], default = [1])
bus, startup_costs = scalar(dict["Startup costs (\$)"], default = [0.0])
max_power, startup_categories = StartupCategory[]
min_power, for k in 1:length(startup_delays)
timeseries(dict["Must run?"], default = [false for t in 1:T]), push!(
min_power_cost, startup_categories,
segments, StartupCategory(
scalar(dict["Minimum uptime (h)"], default = 1) * time_multiplier, startup_delays[k] .* time_multiplier,
scalar(dict["Minimum downtime (h)"], default = 1) * time_multiplier, startup_costs[k],
scalar(dict["Ramp up limit (MW)"], default = 1e6), ),
scalar(dict["Ramp down limit (MW)"], default = 1e6), )
scalar(dict["Startup limit (MW)"], default = 1e6), end
scalar(dict["Shutdown limit (MW)"], default = 1e6),
initial_status, # Read reserve eligibility
initial_power, unit_reserves = Reserve[]
startup_categories, if "Reserve eligibility" in keys(dict)
unit_reserves, unit_reserves =
) [name_to_reserve[n] for n in dict["Reserve eligibility"]]
push!(bus.units, unit) end
for r in unit_reserves
push!(r.units, unit) # Read and validate initial conditions
initial_power =
scalar(dict["Initial power (MW)"], default = nothing)
initial_status =
scalar(dict["Initial status (h)"], default = nothing)
if initial_power === nothing
initial_status === nothing || error(
"unit $unit_name has initial status but no initial power",
)
else
initial_status !== nothing || error(
"unit $unit_name has initial power but no initial status",
)
initial_status != 0 ||
error("unit $unit_name has invalid initial status")
if initial_status < 0 && initial_power > 1e-3
error("unit $unit_name has invalid initial power")
end
initial_status *= time_multiplier
end
# Read commitment status
commitment_status = scalar(
dict["Commitment status"],
default = Vector{Union{Bool,Nothing}}(nothing, T),
)
unit = ThermalUnit(
unit_name,
bus,
max_power,
min_power,
timeseries(dict["Must run?"], default = [false for t in 1:T]),
min_power_cost,
segments,
scalar(dict["Minimum uptime (h)"], default = 1) *
time_multiplier,
scalar(dict["Minimum downtime (h)"], default = 1) *
time_multiplier,
scalar(dict["Ramp up limit (MW)"], default = 1e6),
scalar(dict["Ramp down limit (MW)"], default = 1e6),
scalar(dict["Startup limit (MW)"], default = 1e6),
scalar(dict["Shutdown limit (MW)"], default = 1e6),
initial_status,
initial_power,
startup_categories,
unit_reserves,
commitment_status,
)
push!(bus.thermal_units, unit)
for r in unit_reserves
push!(r.thermal_units, unit)
end
name_to_unit[unit_name] = unit
push!(thermal_units, unit)
elseif lowercase(unit_type) === "profiled"
bus = name_to_bus[dict["Bus"]]
pu = ProfiledUnit(
unit_name,
bus,
timeseries(scalar(dict["Minimum power (MW)"], default = 0.0)),
timeseries(dict["Maximum power (MW)"]),
timeseries(dict["Cost (\$/MW)"]),
)
push!(bus.profiled_units, pu)
push!(profiled_units, pu)
else
error("unit $unit_name has an invalid type")
end end
name_to_unit[unit_name] = unit
push!(units, unit)
end end
# Read transmission lines # Read transmission lines
@@ -278,7 +363,7 @@ function _from_json(json; repair = true)
# Read contingencies # Read contingencies
if "Contingencies" in keys(json) if "Contingencies" in keys(json)
for (cont_name, dict) in json["Contingencies"] for (cont_name, dict) in json["Contingencies"]
affected_units = Unit[] affected_units = ThermalUnit[]
affected_lines = TransmissionLine[] affected_lines = TransmissionLine[]
if "Affected lines" in keys(dict) if "Affected lines" in keys(dict)
affected_lines = affected_lines =
@@ -308,7 +393,9 @@ function _from_json(json; repair = true)
end end
end end
instance = UnitCommitmentInstance( scenario = UnitCommitmentScenario(
name = scenario_name,
probability = probability,
buses_by_name = Dict(b.name => b for b in buses), buses_by_name = Dict(b.name => b for b in buses),
buses = buses, buses = buses,
contingencies_by_name = Dict(c.name => c for c in contingencies), contingencies_by_name = Dict(c.name => c for c in contingencies),
@@ -320,14 +407,16 @@ function _from_json(json; repair = true)
price_sensitive_loads = loads, price_sensitive_loads = loads,
reserves = reserves, reserves = reserves,
reserves_by_name = name_to_reserve, reserves_by_name = name_to_reserve,
shortfall_penalty = shortfall_penalty,
flexiramp_shortfall_penalty = flexiramp_shortfall_penalty,
time = T, time = T,
units_by_name = Dict(g.name => g for g in units), thermal_units_by_name = Dict(g.name => g for g in thermal_units),
units = units, thermal_units = thermal_units,
profiled_units_by_name = Dict(pu.name => pu for pu in profiled_units),
profiled_units = profiled_units,
isf = spzeros(Float64, length(lines), length(buses) - 1),
lodf = spzeros(Float64, length(lines), length(lines)),
) )
if repair if repair
UnitCommitment.repair!(instance) UnitCommitment.repair!(scenario)
end end
return instance return scenario
end end

View File

@@ -6,8 +6,9 @@ mutable struct Bus
name::String name::String
offset::Int offset::Int
load::Vector{Float64} load::Vector{Float64}
units::Vector thermal_units::Vector
price_sensitive_loads::Vector price_sensitive_loads::Vector
profiled_units::Vector
end end
mutable struct CostSegment mutable struct CostSegment
@@ -24,11 +25,11 @@ Base.@kwdef mutable struct Reserve
name::String name::String
type::String type::String
amount::Vector{Float64} amount::Vector{Float64}
units::Vector thermal_units::Vector
shortfall_penalty::Float64 shortfall_penalty::Float64
end end
mutable struct Unit mutable struct ThermalUnit
name::String name::String
bus::Bus bus::Bus
max_power::Vector{Float64} max_power::Vector{Float64}
@@ -46,6 +47,7 @@ mutable struct Unit
initial_power::Union{Float64,Nothing} initial_power::Union{Float64,Nothing}
startup_categories::Vector{StartupCategory} startup_categories::Vector{StartupCategory}
reserves::Vector{Reserve} reserves::Vector{Reserve}
commitment_status::Vector{Union{Bool,Nothing}}
end end
mutable struct TransmissionLine mutable struct TransmissionLine
@@ -63,7 +65,7 @@ end
mutable struct Contingency mutable struct Contingency
name::String name::String
lines::Vector{TransmissionLine} lines::Vector{TransmissionLine}
units::Vector{Unit} thermal_units::Vector{ThermalUnit}
end end
mutable struct PriceSensitiveLoad mutable struct PriceSensitiveLoad
@@ -73,35 +75,52 @@ mutable struct PriceSensitiveLoad
revenue::Vector{Float64} revenue::Vector{Float64}
end end
Base.@kwdef mutable struct UnitCommitmentInstance mutable struct ProfiledUnit
name::String
bus::Bus
min_power::Vector{Float64}
max_power::Vector{Float64}
cost::Vector{Float64}
end
Base.@kwdef mutable struct UnitCommitmentScenario
buses_by_name::Dict{AbstractString,Bus} buses_by_name::Dict{AbstractString,Bus}
buses::Vector{Bus} buses::Vector{Bus}
contingencies_by_name::Dict{AbstractString,Contingency} contingencies_by_name::Dict{AbstractString,Contingency}
contingencies::Vector{Contingency} contingencies::Vector{Contingency}
isf::Array{Float64,2}
lines_by_name::Dict{AbstractString,TransmissionLine} lines_by_name::Dict{AbstractString,TransmissionLine}
lines::Vector{TransmissionLine} lines::Vector{TransmissionLine}
lodf::Array{Float64,2}
name::String
power_balance_penalty::Vector{Float64} power_balance_penalty::Vector{Float64}
price_sensitive_loads_by_name::Dict{AbstractString,PriceSensitiveLoad} price_sensitive_loads_by_name::Dict{AbstractString,PriceSensitiveLoad}
price_sensitive_loads::Vector{PriceSensitiveLoad} price_sensitive_loads::Vector{PriceSensitiveLoad}
reserves::Vector{Reserve} probability::Float64
profiled_units_by_name::Dict{AbstractString,ProfiledUnit}
profiled_units::Vector{ProfiledUnit}
reserves_by_name::Dict{AbstractString,Reserve} reserves_by_name::Dict{AbstractString,Reserve}
shortfall_penalty::Vector{Float64} reserves::Vector{Reserve}
flexiramp_shortfall_penalty::Vector{Float64} thermal_units_by_name::Dict{AbstractString,ThermalUnit}
thermal_units::Vector{ThermalUnit}
time::Int time::Int
units_by_name::Dict{AbstractString,Unit} end
units::Vector{Unit}
Base.@kwdef mutable struct UnitCommitmentInstance
time::Int
scenarios::Vector{UnitCommitmentScenario}
end end
function Base.show(io::IO, instance::UnitCommitmentInstance) function Base.show(io::IO, instance::UnitCommitmentInstance)
sc = instance.scenarios[1]
print(io, "UnitCommitmentInstance(") print(io, "UnitCommitmentInstance(")
print(io, "$(length(instance.units)) units, ") print(io, "$(length(instance.scenarios)) scenarios, ")
print(io, "$(length(instance.buses)) buses, ") print(io, "$(length(sc.thermal_units)) thermal units, ")
print(io, "$(length(instance.lines)) lines, ") print(io, "$(length(sc.profiled_units)) profiled units, ")
print(io, "$(length(instance.contingencies)) contingencies, ") print(io, "$(length(sc.buses)) buses, ")
print( print(io, "$(length(sc.lines)) lines, ")
io, print(io, "$(length(sc.contingencies)) contingencies, ")
"$(length(instance.price_sensitive_loads)) price sensitive loads, ", print(io, "$(length(sc.price_sensitive_loads)) price sensitive loads, ")
)
print(io, "$(instance.time) time steps") print(io, "$(instance.time) time steps")
print(io, ")") print(io, ")")
return return

212
src/lmp/aelmp.jl Normal file
View File

@@ -0,0 +1,212 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
"""
function compute_lmp(
model::JuMP.Model,
method::AELMP;
optimizer,
)::OrderedDict{Tuple{String,Int},Float64}
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
The AELPM does the following three things:
1. It sets the minimum power output of each generator to zero
2. It averages the start-up cost over the offer blocks for each generator
3. It relaxes all integrality constraints
Returns a dictionary mapping `(bus_name, time)` to the marginal price.
WARNING: This approximation method is not fully developed. The implementation is based on MISO Phase I only.
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
2. The method does NOT support time-varying start-up costs.
3. An asset is considered offline if it is never on throughout all time periods.
4. The method does NOT support multiple scenarios.
Arguments
---------
- `model`:
the UnitCommitment model, must be solved before calling this function if offline participation is not allowed.
- `method`:
the AELMP method.
- `optimizer`:
the optimizer for solving the LP problem.
Examples
--------
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: AELMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the AELMPs
aelmp = UnitCommitment.compute_lmp(
model,
AELMP(
allow_offline_participation = false,
consider_startup_costs = true
),
optimizer = HiGHS.Optimizer
)
# Access the AELMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
# Note: although scenario is supported, the query still keeps the scenario keys for consistency.
@show aelmp["s1", "b1", 1]
```
"""
function compute_lmp(
model::JuMP.Model,
method::AELMP;
optimizer,
)::OrderedDict{Tuple{String,String,Int},Float64}
@info "Building the approximation model..."
instance = deepcopy(model[:instance])
_aelmp_check_parameters(instance, model, method)
_modify_scenario!(instance.scenarios[1], model, method)
# prepare the result dictionary and solve the model
elmp = OrderedDict()
@info "Solving the approximation model."
approx_model = build_model(instance = instance, variable_names = true)
# relax the binary constraint, and relax integrality
for v in all_variables(approx_model)
if is_binary(v)
unset_binary(v)
end
end
relax_integrality(approx_model)
set_optimizer(approx_model, optimizer)
# solve the model
set_silent(approx_model)
optimize!(approx_model)
# access the dual values
@info "Getting dual values (AELMPs)."
for (key, val) in approx_model[:eq_net_injection]
elmp[key] = dual(val)
end
return elmp
end
function _aelmp_check_parameters(
instance::UnitCommitmentInstance,
model::JuMP.Model,
method::AELMP,
)
# CHECK: model cannot have multiple scenarios
if length(instance.scenarios) > 1
error("The method does NOT support multiple scenarios.")
end
sc = instance.scenarios[1]
# CHECK: model must be solved if allow_offline_participation=false
if !method.allow_offline_participation
if isnothing(model) || !has_values(model)
error(
"A solved UC model is required if allow_offline_participation=false.",
)
end
end
all_units = sc.thermal_units
# CHECK: model cannot handle non-fast-starts (MISO Phase I: can ONLY solve fast-starts)
if any(u -> u.min_uptime > 1 || u.min_downtime > 1, all_units)
error(
"The minimum up/down time of all generators must be 1. AELMP only supports fast-starts.",
)
end
if any(u -> u.initial_power > 0, all_units)
error("The initial power of all generators must be 0.")
end
if any(u -> u.initial_status >= 0, all_units)
error("The initial status of all generators must be negative.")
end
# CHECK: model does not support startup costs (in time series)
if any(u -> length(u.startup_categories) > 1, all_units)
error("The method does NOT support time-varying start-up costs.")
end
end
function _modify_scenario!(
sc::UnitCommitmentScenario,
model::JuMP.Model,
method::AELMP,
)
# this function modifies the sc units (generators)
if !method.allow_offline_participation
# 1. remove (if NOT allowing) the offline generators
units_to_remove = []
for unit in sc.thermal_units
# remove based on the solved UC model result
# remove the unit if it is never on
if all(t -> value(model[:is_on][unit.name, t]) == 0, sc.time)
# unregister from the bus
filter!(x -> x.name != unit.name, unit.bus.thermal_units)
# unregister from the reserve
for r in unit.reserves
filter!(x -> x.name != unit.name, r.thermal_units)
end
# append the name to the remove list
push!(units_to_remove, unit.name)
end
end
# unregister the units from the remove list
filter!(x -> !(x.name in units_to_remove), sc.thermal_units)
end
for unit in sc.thermal_units
# 2. set min generation requirement to 0 by adding 0 to production curve and cost
# min_power & min_costs are vectors with dimension T
if unit.min_power[1] != 0
first_cost_segment = unit.cost_segments[1]
pushfirst!(
unit.cost_segments,
CostSegment(
ones(size(first_cost_segment.mw)) * unit.min_power[1],
ones(size(first_cost_segment.cost)) *
unit.min_power_cost[1] / unit.min_power[1],
),
)
unit.min_power = zeros(size(first_cost_segment.mw))
unit.min_power_cost = zeros(size(first_cost_segment.cost))
end
# 3. average the start-up costs (if considering)
# if consider_startup_costs = false, then use the current first_startup_cost
first_startup_cost = unit.startup_categories[1].cost
if method.consider_startup_costs
additional_unit_cost = first_startup_cost / unit.max_power[1]
for i in eachindex(unit.cost_segments)
unit.cost_segments[i].cost .+= additional_unit_cost
end
first_startup_cost = 0.0 # zero out the start up cost
end
unit.startup_categories =
StartupCategory[StartupCategory(0, first_startup_cost)]
end
return sc.thermal_units_by_name =
Dict(g.name => g for g in sc.thermal_units)
end

92
src/lmp/conventional.jl Normal file
View File

@@ -0,0 +1,92 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
"""
function compute_lmp(
model::JuMP.Model,
method::ConventionalLMP;
optimizer,
)::OrderedDict{Tuple{String,String,Int},Float64}
Calculates conventional locational marginal prices of the given unit commitment
instance. Returns a dictionary mapping `(bus_name, time)` to the marginal price.
Arguments
---------
- `model`:
the UnitCommitment model, must be solved before calling this function.
- `method`:
the LMP method.
- `optimizer`:
the optimizer for solving the LP problem.
Examples
--------
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: ConventionalLMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2018-01-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the LMPs using the conventional method
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
# Access the LMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
@show lmp["s1", "b1", 1]
```
"""
function compute_lmp(
model::JuMP.Model,
::ConventionalLMP;
optimizer,
)::OrderedDict{Tuple{String,String,Int},Float64}
if !has_values(model)
error("The UC model must be solved before calculating the LMPs.")
end
lmp = OrderedDict()
@info "Fixing binary variables and relaxing integrality..."
vals = Dict(v => value(v) for v in all_variables(model))
for v in all_variables(model)
if is_binary(v)
unset_binary(v)
fix(v, vals[v])
end
end
relax_integrality(model)
set_optimizer(model, optimizer)
@info "Solving the LP..."
JuMP.optimize!(model)
@info "Getting dual values (LMPs)..."
for (key, val) in model[:eq_net_injection]
lmp[key] = dual(val)
end
return lmp
end

28
src/lmp/structs.jl Normal file
View File

@@ -0,0 +1,28 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
abstract type PricingMethod end
struct ConventionalLMP <: PricingMethod end
"""
struct AELMP <: PricingMethod
allow_offline_participation::Bool = true
consider_startup_costs::Bool = true
end
Approximate Extended LMPs.
Arguments
---------
- `allow_offline_participation`:
If true, offline assets are allowed to participate in pricing.
- `consider_startup_costs`:
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
"""
Base.@kwdef struct AELMP <: PricingMethod
allow_offline_participation::Bool = true
consider_startup_costs::Bool = true
end

View File

@@ -77,20 +77,30 @@ function build_model(;
end end
model[:obj] = AffExpr() model[:obj] = AffExpr()
model[:instance] = instance model[:instance] = instance
_setup_transmission(model, formulation.transmission) for g in instance.scenarios[1].thermal_units
for l in instance.lines _add_unit_commitment!(model, g, formulation)
_add_transmission_line!(model, l, formulation.transmission)
end end
for b in instance.buses for sc in instance.scenarios
_add_bus!(model, b) @info "Building scenario $(sc.name) with " *
"probability $(sc.probability)"
_setup_transmission(formulation.transmission, sc)
for l in sc.lines
_add_transmission_line!(model, l, formulation.transmission, sc)
end
for b in sc.buses
_add_bus!(model, b, sc)
end
for ps in sc.price_sensitive_loads
_add_price_sensitive_load!(model, ps, sc)
end
for g in sc.thermal_units
_add_unit_dispatch!(model, g, formulation, sc)
end
for pu in sc.profiled_units
_add_profiled_unit!(model, pu, sc)
end
_add_system_wide_eqs!(model, sc)
end end
for g in instance.units
_add_unit!(model, g, formulation)
end
for ps in instance.price_sensitive_loads
_add_price_sensitive_load!(model, ps)
end
_add_system_wide_eqs!(model)
@objective(model, Min, model[:obj]) @objective(model, Min, model[:obj])
end end
@info @sprintf("Built model in %.2f seconds", time_model) @info @sprintf("Built model in %.2f seconds", time_model)

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!( function _add_ramp_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::ArrCon2000.Ramping, formulation_ramping::ArrCon2000.Ramping,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
# TODO: Move upper case constants to model[:instance] # TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true RESERVES_WHEN_START_UP = true
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
eq_ramp_down = _init(model, :eq_ramp_down) eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_ramp_up) eq_ramp_up = _init(model, :eq_ramp_up)
is_initially_on = (g.initial_status > 0) is_initially_on = (g.initial_status > 0)
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars # Gar1962.ProdVars
prod_above = model[:prod_above] prod_above = model[:prod_above]
@@ -37,10 +38,10 @@ function _add_ramp_eqs!(
if t == 1 if t == 1
if is_initially_on if is_initially_on
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant # min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
eq_ramp_up[gn, t] = @constraint( eq_ramp_up[sc.name, gn, t] = @constraint(
model, model,
g.min_power[t] + g.min_power[t] +
prod_above[gn, t] + prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <= (RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
g.initial_power + RU g.initial_power + RU
) )
@@ -48,16 +49,16 @@ function _add_ramp_eqs!(
else else
max_prod_this_period = max_prod_this_period =
g.min_power[t] * is_on[gn, t] + g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] + prod_above[sc.name, gn, t] +
( (
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[t] : 0.0 reserve[t] : 0.0
) )
min_prod_last_period = min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1] g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
# Equation (24) in Kneuven et al. (2020) # Equation (24) in Kneuven et al. (2020)
eq_ramp_up[gn, t] = @constraint( eq_ramp_up[sc.name, gn, t] = @constraint(
model, model,
max_prod_this_period - min_prod_last_period <= max_prod_this_period - min_prod_last_period <=
RU * is_on[gn, t-1] + SU * switch_on[gn, t] RU * is_on[gn, t-1] + SU * switch_on[gn, t]
@@ -71,24 +72,25 @@ function _add_ramp_eqs!(
# min_power + RD < initial_power < SD # min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1, # then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power # but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint( eq_ramp_down[sc.name, gn, t] = @constraint(
model, model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD g.initial_power -
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
) )
end end
else else
max_prod_last_period = max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] + prod_above[sc.name, gn, t-1] +
( (
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ? RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[t-1] : 0.0 reserve[t-1] : 0.0
) )
min_prod_this_period = min_prod_this_period =
g.min_power[t] * is_on[gn, t] + prod_above[gn, t] g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
# Equation (25) in Kneuven et al. (2020) # Equation (25) in Kneuven et al. (2020)
eq_ramp_down[gn, t] = @constraint( eq_ramp_down[sc.name, gn, t] = @constraint(
model, model,
max_prod_last_period - min_prod_this_period <= max_prod_last_period - min_prod_this_period <=
RD * is_on[gn, t] + SD * switch_off[gn, t] RD * is_on[gn, t] + SD * switch_off[gn, t]

View File

@@ -4,10 +4,11 @@
function _add_production_piecewise_linear_eqs!( function _add_production_piecewise_linear_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::CarArr2006.PwlCosts, formulation_pwl_costs::CarArr2006.PwlCosts,
formulation_status_vars::StatusVarsFormulation, formulation_status_vars::StatusVarsFormulation,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def) eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit) eq_segprod_limit = _init(model, :eq_segprod_limit)
@@ -26,28 +27,32 @@ function _add_production_piecewise_linear_eqs!(
# difference between max power for segments k and k-1 so the # difference between max power for segments k and k-1 so the
# value of cost_segments[k].mw[t] is the max production *for # value of cost_segments[k].mw[t] is the max production *for
# that segment* # that segment*
eq_segprod_limit[gn, t, k] = @constraint( eq_segprod_limit[sc.name, gn, t, k] = @constraint(
model, model,
segprod[gn, t, k] <= g.cost_segments[k].mw[t] segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t]
) )
# Also add this as an explicit upper bound on segprod to make the # Also add this as an explicit upper bound on segprod to make the
# solver's work a bit easier # solver's work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t]) set_upper_bound(
segprod[sc.name, gn, t, k],
g.cost_segments[k].mw[t],
)
# Definition of production # Definition of production
# Equation (43) in Kneuven et al. (2020) # Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint( eq_prod_above_def[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K) prod_above[sc.name, gn, t] ==
sum(segprod[sc.name, gn, t, k] for k in 1:K)
) )
# Objective function # Objective function
# Equation (44) in Kneuven et al. (2020) # Equation (44) in Kneuven et al. (2020)
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
segprod[gn, t, k], segprod[sc.name, gn, t, k],
g.cost_segments[k].cost[t], sc.probability * g.cost_segments[k].cost[t],
) )
end end
end end

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!( function _add_ramp_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::DamKucRajAta2016.Ramping, formulation_ramping::DamKucRajAta2016.Ramping,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
# TODO: Move upper case constants to model[:instance] # TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true RESERVES_WHEN_START_UP = true
@@ -23,7 +24,7 @@ function _add_ramp_eqs!(
gn = g.name gn = g.name
eq_str_ramp_down = _init(model, :eq_str_ramp_down) eq_str_ramp_down = _init(model, :eq_str_ramp_down)
eq_str_ramp_up = _init(model, :eq_str_ramp_up) eq_str_ramp_up = _init(model, :eq_str_ramp_up)
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars # Gar1962.ProdVars
prod_above = model[:prod_above] prod_above = model[:prod_above]
@@ -48,15 +49,15 @@ function _add_ramp_eqs!(
# end # end
max_prod_this_period = max_prod_this_period =
prod_above[gn, t] + prod_above[sc.name, gn, t] +
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) (RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
min_prod_last_period = 0.0 min_prod_last_period = 0.0
if t > 1 && time_invariant if t > 1 && time_invariant
min_prod_last_period = prod_above[gn, t-1] min_prod_last_period = prod_above[sc.name, gn, t-1]
# Equation (35) in Kneuven et al. (2020) # Equation (35) in Kneuven et al. (2020)
# Sparser version of (24) # Sparser version of (24)
eq_str_ramp_up[gn, t] = @constraint( eq_str_ramp_up[sc.name, gn, t] = @constraint(
model, model,
max_prod_this_period - min_prod_last_period <= max_prod_this_period - min_prod_last_period <=
(SU - g.min_power[t] - RU) * switch_on[gn, t] + (SU - g.min_power[t] - RU) * switch_on[gn, t] +
@@ -65,7 +66,8 @@ function _add_ramp_eqs!(
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant) elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
if t > 1 if t > 1
min_prod_last_period = min_prod_last_period =
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1] prod_above[sc.name, gn, t-1] +
g.min_power[t-1] * is_on[gn, t-1]
else else
min_prod_last_period = max(g.initial_power, 0.0) min_prod_last_period = max(g.initial_power, 0.0)
end end
@@ -76,7 +78,7 @@ function _add_ramp_eqs!(
# Modified version of equation (35) in Kneuven et al. (2020) # Modified version of equation (35) in Kneuven et al. (2020)
# Equivalent to (24) # Equivalent to (24)
eq_str_ramp_up[gn, t] = @constraint( eq_str_ramp_up[sc.name, gn, t] = @constraint(
model, model,
max_prod_this_period - min_prod_last_period <= max_prod_this_period - min_prod_last_period <=
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t] (SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
@@ -88,7 +90,7 @@ function _add_ramp_eqs!(
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ? t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
reserve[t-1] : 0.0 reserve[t-1] : 0.0
) )
min_prod_this_period = prod_above[gn, t] min_prod_this_period = prod_above[sc.name, gn, t]
on_last_period = 0.0 on_last_period = 0.0
if t > 1 if t > 1
on_last_period = is_on[gn, t-1] on_last_period = is_on[gn, t-1]
@@ -98,7 +100,7 @@ function _add_ramp_eqs!(
if t > 1 && time_invariant if t > 1 && time_invariant
# Equation (36) in Kneuven et al. (2020) # Equation (36) in Kneuven et al. (2020)
eq_str_ramp_down[gn, t] = @constraint( eq_str_ramp_down[sc.name, gn, t] = @constraint(
model, model,
max_prod_last_period - min_prod_this_period <= max_prod_last_period - min_prod_this_period <=
(SD - g.min_power[t] - RD) * switch_off[gn, t] + (SD - g.min_power[t] - RD) * switch_off[gn, t] +
@@ -110,7 +112,7 @@ function _add_ramp_eqs!(
# Modified version of equation (36) in Kneuven et al. (2020) # Modified version of equation (36) in Kneuven et al. (2020)
# Equivalent to (25) # Equivalent to (25)
eq_str_ramp_down[gn, t] = @constraint( eq_str_ramp_down[sc.name, gn, t] = @constraint(
model, model,
max_prod_last_period - min_prod_this_period <= max_prod_last_period - min_prod_this_period <=
(SD - RD) * switch_off[gn, t] + RD * on_last_period (SD - RD) * switch_off[gn, t] + RD * on_last_period

View File

@@ -4,34 +4,35 @@
function _add_production_vars!( function _add_production_vars!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
prod_above = _init(model, :prod_above) prod_above = _init(model, :prod_above)
segprod = _init(model, :segprod) segprod = _init(model, :segprod)
for t in 1:model[:instance].time for t in 1:model[:instance].time
for k in 1:length(g.cost_segments) for k in 1:length(g.cost_segments)
segprod[g.name, t, k] = @variable(model, lower_bound = 0) segprod[sc.name, g.name, t, k] = @variable(model, lower_bound = 0)
end end
prod_above[g.name, t] = @variable(model, lower_bound = 0) prod_above[sc.name, g.name, t] = @variable(model, lower_bound = 0)
end end
return return
end end
function _add_production_limit_eqs!( function _add_production_limit_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
eq_prod_limit = _init(model, :eq_prod_limit) eq_prod_limit = _init(model, :eq_prod_limit)
is_on = model[:is_on] is_on = model[:is_on]
prod_above = model[:prod_above] prod_above = model[:prod_above]
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
gn = g.name gn = g.name
for t in 1:model[:instance].time for t in 1:model[:instance].time
# Objective function terms for production costs # Objective function terms for production costs
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term # Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
# Production limit # Production limit
# Equation (18) in Kneuven et al. (2020) # Equation (18) in Kneuven et al. (2020)
@@ -42,9 +43,10 @@ function _add_production_limit_eqs!(
if power_diff < 1e-7 if power_diff < 1e-7
power_diff = 0.0 power_diff = 0.0
end end
eq_prod_limit[gn, t] = @constraint( eq_prod_limit[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] + reserve[t] <= power_diff * is_on[gn, t] prod_above[sc.name, gn, t] + reserve[t] <=
power_diff * is_on[gn, t]
) )
end end
end end

View File

@@ -4,10 +4,11 @@
function _add_production_piecewise_linear_eqs!( function _add_production_piecewise_linear_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::Gar1962.PwlCosts, formulation_pwl_costs::Gar1962.PwlCosts,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def) eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit) eq_segprod_limit = _init(model, :eq_segprod_limit)
@@ -24,9 +25,10 @@ function _add_production_piecewise_linear_eqs!(
for t in 1:model[:instance].time for t in 1:model[:instance].time
# Definition of production # Definition of production
# Equation (43) in Kneuven et al. (2020) # Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint( eq_prod_above_def[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K) prod_above[sc.name, gn, t] ==
sum(segprod[sc.name, gn, t, k] for k in 1:K)
) )
for k in 1:K for k in 1:K
@@ -37,21 +39,25 @@ function _add_production_piecewise_linear_eqs!(
# difference between max power for segments k and k-1 so the # difference between max power for segments k and k-1 so the
# value of cost_segments[k].mw[t] is the max production *for # value of cost_segments[k].mw[t] is the max production *for
# that segment* # that segment*
eq_segprod_limit[gn, t, k] = @constraint( eq_segprod_limit[sc.name, gn, t, k] = @constraint(
model, model,
segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t] segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t]
) )
# Also add this as an explicit upper bound on segprod to make the # Also add this as an explicit upper bound on segprod to make the
# solver's work a bit easier # solver's work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t]) set_upper_bound(
segprod[sc.name, gn, t, k],
g.cost_segments[k].mw[t],
)
# Objective function # Objective function
# Equation (44) in Kneuven et al. (2020) # Equation (44) in Kneuven et al. (2020)
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
segprod[gn, t, k], segprod[sc.name, gn, t, k],
g.cost_segments[k].cost[t], sc.probability * g.cost_segments[k].cost[t],
) )
end end
end end

View File

@@ -4,7 +4,7 @@
function _add_status_vars!( function _add_status_vars!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
)::Nothing )::Nothing
is_on = _init(model, :is_on) is_on = _init(model, :is_on)
@@ -20,13 +20,14 @@ function _add_status_vars!(
switch_on[g.name, t] = @variable(model, binary = true) switch_on[g.name, t] = @variable(model, binary = true)
switch_off[g.name, t] = @variable(model, binary = true) switch_off[g.name, t] = @variable(model, binary = true)
end end
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
end end
return return
end end
function _add_status_eqs!( function _add_status_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
)::Nothing )::Nothing
eq_binary_link = _init(model, :eq_binary_link) eq_binary_link = _init(model, :eq_binary_link)

View File

@@ -4,10 +4,11 @@
function _add_production_piecewise_linear_eqs!( function _add_production_piecewise_linear_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::KnuOstWat2018.PwlCosts, formulation_pwl_costs::KnuOstWat2018.PwlCosts,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def) eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a) eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
@@ -58,27 +59,27 @@ function _add_production_piecewise_linear_eqs!(
if g.min_uptime > 1 if g.min_uptime > 1
# Equation (46) in Kneuven et al. (2020) # Equation (46) in Kneuven et al. (2020)
eq_segprod_limit_a[gn, t, k] = @constraint( eq_segprod_limit_a[sc.name, gn, t, k] = @constraint(
model, model,
segprod[gn, t, k] <= segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] - g.cost_segments[k].mw[t] * is_on[gn, t] -
Cv * switch_on[gn, t] - Cv * switch_on[gn, t] -
(t < T ? Cw * switch_off[gn, t+1] : 0.0) (t < T ? Cw * switch_off[gn, t+1] : 0.0)
) )
else else
# Equation (47a)/(48a) in Kneuven et al. (2020) # Equation (47a)/(48a) in Kneuven et al. (2020)
eq_segprod_limit_b[gn, t, k] = @constraint( eq_segprod_limit_b[sc.name, gn, t, k] = @constraint(
model, model,
segprod[gn, t, k] <= segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] - g.cost_segments[k].mw[t] * is_on[gn, t] -
Cv * switch_on[gn, t] - Cv * switch_on[gn, t] -
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0) (t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
) )
# Equation (47b)/(48b) in Kneuven et al. (2020) # Equation (47b)/(48b) in Kneuven et al. (2020)
eq_segprod_limit_c[gn, t, k] = @constraint( eq_segprod_limit_c[sc.name, gn, t, k] = @constraint(
model, model,
segprod[gn, t, k] <= segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] - g.cost_segments[k].mw[t] * is_on[gn, t] -
max(0, Cw - Cv) * switch_on[gn, t] - max(0, Cw - Cv) * switch_on[gn, t] -
(t < T ? Cw * switch_off[gn, t+1] : 0.0) (t < T ? Cw * switch_off[gn, t+1] : 0.0)
@@ -87,22 +88,26 @@ function _add_production_piecewise_linear_eqs!(
# Definition of production # Definition of production
# Equation (43) in Kneuven et al. (2020) # Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint( eq_prod_above_def[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K) prod_above[sc.name, gn, t] ==
sum(segprod[sc.name, gn, t, k] for k in 1:K)
) )
# Objective function # Objective function
# Equation (44) in Kneuven et al. (2020) # Equation (44) in Kneuven et al. (2020)
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
segprod[gn, t, k], segprod[sc.name, gn, t, k],
g.cost_segments[k].cost[t], g.cost_segments[k].cost[t],
) )
# Also add an explicit upper bound on segprod to make the solver's # Also add an explicit upper bound on segprod to make the solver's
# work a bit easier # work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t]) set_upper_bound(
segprod[sc.name, gn, t, k],
g.cost_segments[k].mw[t],
)
end end
end end
end end

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!( function _add_ramp_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::MorLatRam2013.Ramping, formulation_ramping::MorLatRam2013.Ramping,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
# TODO: Move upper case constants to model[:instance] # TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true RESERVES_WHEN_START_UP = true
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
gn = g.name gn = g.name
eq_ramp_down = _init(model, :eq_ramp_down) eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_str_ramp_up) eq_ramp_up = _init(model, :eq_str_ramp_up)
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars # Gar1962.ProdVars
prod_above = model[:prod_above] prod_above = model[:prod_above]
@@ -39,10 +40,10 @@ function _add_ramp_eqs!(
# Ramp up limit # Ramp up limit
if t == 1 if t == 1
if is_initially_on if is_initially_on
eq_ramp_up[gn, t] = @constraint( eq_ramp_up[sc.name, gn, t] = @constraint(
model, model,
g.min_power[t] + g.min_power[t] +
prod_above[gn, t] + prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <= (RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
g.initial_power + RU g.initial_power + RU
) )
@@ -58,13 +59,14 @@ function _add_ramp_eqs!(
SU = g.startup_limit SU = g.startup_limit
max_prod_this_period = max_prod_this_period =
g.min_power[t] * is_on[gn, t] + g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] + prod_above[sc.name, gn, t] +
( (
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[t] : 0.0 reserve[t] : 0.0
) )
min_prod_last_period = min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1] g.min_power[t-1] * is_on[gn, t-1] +
prod_above[sc.name, gn, t-1]
eq_ramp_up[gn, t] = @constraint( eq_ramp_up[gn, t] = @constraint(
model, model,
max_prod_this_period - min_prod_last_period <= max_prod_this_period - min_prod_last_period <=
@@ -74,11 +76,11 @@ function _add_ramp_eqs!(
# Equation (26) in Kneuven et al. (2020) # Equation (26) in Kneuven et al. (2020)
# TODO: what if RU < SU? places too stringent upper bound # TODO: what if RU < SU? places too stringent upper bound
# prod_above[gn, t] when starting up, and creates diff with (24). # prod_above[gn, t] when starting up, and creates diff with (24).
eq_ramp_up[gn, t] = @constraint( eq_ramp_up[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] + prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) - (RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) -
prod_above[gn, t-1] <= RU prod_above[sc.name, gn, t-1] <= RU
) )
end end
end end
@@ -90,9 +92,10 @@ function _add_ramp_eqs!(
# min_power + RD < initial_power < SD # min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1, # then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power # but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint( eq_ramp_down[sc.name, gn, t] = @constraint(
model, model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD g.initial_power -
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
) )
end end
else else
@@ -102,13 +105,13 @@ function _add_ramp_eqs!(
SD = g.shutdown_limit SD = g.shutdown_limit
max_prod_last_period = max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] + prod_above[sc.name, gn, t-1] +
( (
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ? RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[t-1] : 0.0 reserve[t-1] : 0.0
) )
min_prod_this_period = min_prod_this_period =
g.min_power[t] * is_on[gn, t] + prod_above[gn, t] g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
eq_ramp_down[gn, t] = @constraint( eq_ramp_down[gn, t] = @constraint(
model, model,
max_prod_last_period - min_prod_this_period <= max_prod_last_period - min_prod_this_period <=
@@ -118,11 +121,11 @@ function _add_ramp_eqs!(
# Equation (27) in Kneuven et al. (2020) # Equation (27) in Kneuven et al. (2020)
# TODO: Similar to above, what to do if shutting down in time t # TODO: Similar to above, what to do if shutting down in time t
# and RD < SD? There is a difference with (25). # and RD < SD? There is a difference with (25).
eq_ramp_down[gn, t] = @constraint( eq_ramp_down[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t-1] + prod_above[sc.name, gn, t-1] +
(RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) - (RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) -
prod_above[gn, t] <= RD prod_above[sc.name, gn, t] <= RD
) )
end end
end end

View File

@@ -4,7 +4,7 @@
function _add_startup_cost_eqs!( function _add_startup_cost_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation::MorLatRam2013.StartupCosts, formulation::MorLatRam2013.StartupCosts,
)::Nothing )::Nothing
eq_startup_choose = _init(model, :eq_startup_choose) eq_startup_choose = _init(model, :eq_startup_choose)

View File

@@ -4,15 +4,16 @@
function _add_ramp_eqs!( function _add_ramp_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars, formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::PanGua2016.Ramping, formulation_ramping::PanGua2016.Ramping,
formulation_status_vars::Gar1962.StatusVars, formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
# TODO: Move upper case constants to model[:instance] # TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_SHUT_DOWN = true RESERVES_WHEN_SHUT_DOWN = true
gn = g.name gn = g.name
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
eq_str_prod_limit = _init(model, :eq_str_prod_limit) eq_str_prod_limit = _init(model, :eq_str_prod_limit)
eq_prod_limit_ramp_up_extra_period = eq_prod_limit_ramp_up_extra_period =
_init(model, :eq_prod_limit_ramp_up_extra_period) _init(model, :eq_prod_limit_ramp_up_extra_period)
@@ -52,9 +53,9 @@ function _add_ramp_eqs!(
# Generalization of (20) # Generalization of (20)
# Necessary that if any of the switch_on = 1 in the sum, # Necessary that if any of the switch_on = 1 in the sum,
# then switch_off[gn, t+1] = 0 # then switch_off[gn, t+1] = 0
eq_str_prod_limit[gn, t] = @constraint( eq_str_prod_limit[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] + prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] + g.min_power[t] * is_on[gn, t] +
reserve[t] <= reserve[t] <=
Pbar * is_on[gn, t] - Pbar * is_on[gn, t] -
@@ -67,16 +68,17 @@ function _add_ramp_eqs!(
if UT - 2 < TRU if UT - 2 < TRU
# Equation (40) in Kneuven et al. (2020) # Equation (40) in Kneuven et al. (2020)
# Covers an additional time period of the ramp-up trajectory, compared to (38) # Covers an additional time period of the ramp-up trajectory, compared to (38)
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint( eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] =
model, @constraint(
prod_above[gn, t] + model,
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t] +
reserve[t] <= g.min_power[t] * is_on[gn, t] +
Pbar * is_on[gn, t] - sum( reserve[t] <=
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for Pbar * is_on[gn, t] - sum(
i in 0:min(UT - 1, TRU, t - 1) (Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
i in 0:min(UT - 1, TRU, t - 1)
)
) )
)
end end
# Add in shutdown trajectory if KSD >= 0 (else this is dominated by (38)) # Add in shutdown trajectory if KSD >= 0 (else this is dominated by (38))
@@ -84,9 +86,9 @@ function _add_ramp_eqs!(
if KSD > 0 if KSD > 0
KSU = min(TRU, UT - 2 - KSD, t - 1) KSU = min(TRU, UT - 2 - KSD, t - 1)
# Equation (41) in Kneuven et al. (2020) # Equation (41) in Kneuven et al. (2020)
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint( eq_prod_limit_shutdown_trajectory[sc.name, gn, t] = @constraint(
model, model,
prod_above[gn, t] + prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] + g.min_power[t] * is_on[gn, t] +
(RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <= (RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <=
Pbar * is_on[gn, t] - sum( Pbar * is_on[gn, t] - sum(

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!( function _add_ramp_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
::Gar1962.ProdVars, ::Gar1962.ProdVars,
::WanHob2016.Ramping, ::WanHob2016.Ramping,
::Gar1962.StatusVars, ::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
is_initially_on = (g.initial_status > 0) is_initially_on = (g.initial_status > 0)
SU = g.startup_limit SU = g.startup_limit
@@ -38,41 +39,43 @@ function _add_ramp_eqs!(
for t in 1:model[:instance].time for t in 1:model[:instance].time
@constraint( @constraint(
model, model,
prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[rn, gn, t] prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <=
mfg[sc.name, gn, t]
) # Eq. (19) in Wang & Hobbs (2016) ) # Eq. (19) in Wang & Hobbs (2016)
@constraint(model, mfg[rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016) @constraint(model, mfg[sc.name, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
if t != model[:instance].time if t != model[:instance].time
@constraint( @constraint(
model, model,
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <= minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
prod_above[gn, t] - dwflexiramp[rn, gn, t] + prod_above[sc.name, gn, t] -
(is_on[gn, t] * minp[t]) dwflexiramp[sc.name, rn, gn, t] + (is_on[gn, t] * minp[t])
) # first inequality of Eq. (20) in Wang & Hobbs (2016) ) # first inequality of Eq. (20) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
prod_above[gn, t] - dwflexiramp[rn, gn, t] + prod_above[sc.name, gn, t] -
dwflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) <= (is_on[gn, t] * minp[t]) <=
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1])) mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
) # second inequality of Eq. (20) in Wang & Hobbs (2016) ) # second inequality of Eq. (20) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <= minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
prod_above[gn, t] + prod_above[sc.name, gn, t] +
upflexiramp[rn, gn, t] + upflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) (is_on[gn, t] * minp[t])
) # first inequality of Eq. (21) in Wang & Hobbs (2016) ) # first inequality of Eq. (21) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
prod_above[gn, t] + prod_above[sc.name, gn, t] +
upflexiramp[rn, gn, t] + upflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) <= (is_on[gn, t] * minp[t]) <=
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1])) mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
) # second inequality of Eq. (21) in Wang & Hobbs (2016) ) # second inequality of Eq. (21) in Wang & Hobbs (2016)
if t != 1 if t != 1
@constraint( @constraint(
model, model,
mfg[rn, gn, t] <= mfg[sc.name, gn, t] <=
prod_above[gn, t-1] + prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t]) + (is_on[gn, t-1] * minp[t]) +
(RU * is_on[gn, t-1]) + (RU * is_on[gn, t-1]) +
(SU * (is_on[gn, t] - is_on[gn, t-1])) + (SU * (is_on[gn, t] - is_on[gn, t-1])) +
@@ -80,8 +83,13 @@ function _add_ramp_eqs!(
) # Eq. (23) in Wang & Hobbs (2016) ) # Eq. (23) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) - (
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <= prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t])
) - (
prod_above[sc.name, gn, t] +
(is_on[gn, t] * minp[t])
) <=
RD * is_on[gn, t] + RD * is_on[gn, t] +
SD * (is_on[gn, t-1] - is_on[gn, t]) + SD * (is_on[gn, t-1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t-1]) maxp[t] * (1 - is_on[gn, t-1])
@@ -89,7 +97,7 @@ function _add_ramp_eqs!(
else else
@constraint( @constraint(
model, model,
mfg[rn, gn, t] <= mfg[sc.name, gn, t] <=
initial_power + initial_power +
(RU * is_initially_on) + (RU * is_initially_on) +
(SU * (is_on[gn, t] - is_initially_on)) + (SU * (is_on[gn, t] - is_initially_on)) +
@@ -97,8 +105,10 @@ function _add_ramp_eqs!(
) # Eq. (23) in Wang & Hobbs (2016) for the first time period ) # Eq. (23) in Wang & Hobbs (2016) for the first time period
@constraint( @constraint(
model, model,
initial_power - initial_power - (
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <= prod_above[sc.name, gn, t] +
(is_on[gn, t] * minp[t])
) <=
RD * is_on[gn, t] + RD * is_on[gn, t] +
SD * (is_initially_on - is_on[gn, t]) + SD * (is_initially_on - is_on[gn, t]) +
maxp[t] * (1 - is_initially_on) maxp[t] * (1 - is_initially_on)
@@ -106,7 +116,7 @@ function _add_ramp_eqs!(
end end
@constraint( @constraint(
model, model,
mfg[rn, gn, t] <= mfg[sc.name, gn, t] <=
(SD * (is_on[gn, t] - is_on[gn, t+1])) + (SD * (is_on[gn, t] - is_on[gn, t+1])) +
(maxp[t] * is_on[gn, t+1]) (maxp[t] * is_on[gn, t+1])
) # Eq. (24) in Wang & Hobbs (2016) ) # Eq. (24) in Wang & Hobbs (2016)
@@ -114,11 +124,12 @@ function _add_ramp_eqs!(
model, model,
-RD * is_on[gn, t+1] - -RD * is_on[gn, t+1] -
SD * (is_on[gn, t] - is_on[gn, t+1]) - SD * (is_on[gn, t] - is_on[gn, t+1]) -
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[rn, gn, t] maxp[t] * (1 - is_on[gn, t]) <=
upflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (26) in Wang & Hobbs (2016) ) # first inequality of Eq. (26) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
upflexiramp[rn, gn, t] <= upflexiramp[sc.name, rn, gn, t] <=
RU * is_on[gn, t] + RU * is_on[gn, t] +
SU * (is_on[gn, t+1] - is_on[gn, t]) + SU * (is_on[gn, t+1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t+1]) maxp[t] * (1 - is_on[gn, t+1])
@@ -126,11 +137,12 @@ function _add_ramp_eqs!(
@constraint( @constraint(
model, model,
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) - -RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[rn, gn, t] maxp[t] * (1 - is_on[gn, t+1]) <=
dwflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (27) in Wang & Hobbs (2016) ) # first inequality of Eq. (27) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
dwflexiramp[rn, gn, t] <= dwflexiramp[sc.name, rn, gn, t] <=
RD * is_on[gn, t+1] + RD * is_on[gn, t+1] +
SD * (is_on[gn, t] - is_on[gn, t+1]) + SD * (is_on[gn, t] - is_on[gn, t+1]) +
maxp[t] * (1 - is_on[gn, t]) maxp[t] * (1 - is_on[gn, t])
@@ -138,26 +150,27 @@ function _add_ramp_eqs!(
@constraint( @constraint(
model, model,
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <= -maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
upflexiramp[rn, gn, t] upflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (28) in Wang & Hobbs (2016) ) # first inequality of Eq. (28) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
upflexiramp[rn, gn, t] <= maxp[t] * is_on[gn, t+1] upflexiramp[sc.name, rn, gn, t] <= maxp[t] * is_on[gn, t+1]
) # second inequality of Eq. (28) in Wang & Hobbs (2016) ) # second inequality of Eq. (28) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[rn, gn, t] -maxp[t] * is_on[gn, t+1] <=
dwflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (29) in Wang & Hobbs (2016) ) # first inequality of Eq. (29) in Wang & Hobbs (2016)
@constraint( @constraint(
model, model,
dwflexiramp[rn, gn, t] <= dwflexiramp[sc.name, rn, gn, t] <=
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1]) (maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
) # second inequality of Eq. (29) in Wang & Hobbs (2016) ) # second inequality of Eq. (29) in Wang & Hobbs (2016)
else else
@constraint( @constraint(
model, model,
mfg[rn, gn, t] <= mfg[sc.name, gn, t] <=
prod_above[gn, t-1] + prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t]) + (is_on[gn, t-1] * minp[t]) +
(RU * is_on[gn, t-1]) + (RU * is_on[gn, t-1]) +
(SU * (is_on[gn, t] - is_on[gn, t-1])) + (SU * (is_on[gn, t] - is_on[gn, t-1])) +
@@ -165,8 +178,11 @@ function _add_ramp_eqs!(
) # Eq. (23) in Wang & Hobbs (2016) for the last time period ) # Eq. (23) in Wang & Hobbs (2016) for the last time period
@constraint( @constraint(
model, model,
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) - (
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <= prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t])
) -
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
RD * is_on[gn, t] + RD * is_on[gn, t] +
SD * (is_on[gn, t-1] - is_on[gn, t]) + SD * (is_on[gn, t-1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t-1]) maxp[t] * (1 - is_on[gn, t-1])

View File

@@ -2,22 +2,30 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing function _add_bus!(
model::JuMP.Model,
b::Bus,
sc::UnitCommitmentScenario,
)::Nothing
net_injection = _init(model, :expr_net_injection) net_injection = _init(model, :expr_net_injection)
curtail = _init(model, :curtail) curtail = _init(model, :curtail)
for t in 1:model[:instance].time for t in 1:model[:instance].time
# Fixed load # Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t]) net_injection[sc.name, b.name, t] = AffExpr(-b.load[t])
# Load curtailment # Load curtailment
curtail[b.name, t] = curtail[sc.name, b.name, t] =
@variable(model, lower_bound = 0, upper_bound = b.load[t]) @variable(model, lower_bound = 0, upper_bound = b.load[t])
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0) add_to_expression!(
net_injection[sc.name, b.name, t],
curtail[sc.name, b.name, t],
1.0,
)
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
curtail[b.name, t], curtail[sc.name, b.name, t],
model[:instance].power_balance_penalty[t], sc.power_balance_penalty[t] * sc.probability,
) )
end end
return return

View File

@@ -6,43 +6,43 @@ function _add_transmission_line!(
model::JuMP.Model, model::JuMP.Model,
lm::TransmissionLine, lm::TransmissionLine,
f::ShiftFactorsFormulation, f::ShiftFactorsFormulation,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
overflow = _init(model, :overflow) overflow = _init(model, :overflow)
for t in 1:model[:instance].time for t in 1:model[:instance].time
overflow[lm.name, t] = @variable(model, lower_bound = 0) overflow[sc.name, lm.name, t] = @variable(model, lower_bound = 0)
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
overflow[lm.name, t], overflow[sc.name, lm.name, t],
lm.flow_limit_penalty[t], lm.flow_limit_penalty[t] * sc.probability,
) )
end end
return return
end end
function _setup_transmission( function _setup_transmission(
model::JuMP.Model,
formulation::ShiftFactorsFormulation, formulation::ShiftFactorsFormulation,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
instance = model[:instance]
isf = formulation.precomputed_isf isf = formulation.precomputed_isf
lodf = formulation.precomputed_lodf lodf = formulation.precomputed_lodf
if length(instance.buses) == 1 if length(sc.buses) == 1
isf = zeros(0, 0) isf = zeros(0, 0)
lodf = zeros(0, 0) lodf = zeros(0, 0)
elseif isf === nothing elseif isf === nothing
@info "Computing injection shift factors..." @info "Computing injection shift factors..."
time_isf = @elapsed begin time_isf = @elapsed begin
isf = UnitCommitment._injection_shift_factors( isf = UnitCommitment._injection_shift_factors(
lines = instance.lines, buses = sc.buses,
buses = instance.buses, lines = sc.lines,
) )
end end
@info @sprintf("Computed ISF in %.2f seconds", time_isf) @info @sprintf("Computed ISF in %.2f seconds", time_isf)
@info "Computing line outage factors..." @info "Computing line outage factors..."
time_lodf = @elapsed begin time_lodf = @elapsed begin
lodf = UnitCommitment._line_outage_factors( lodf = UnitCommitment._line_outage_factors(
lines = instance.lines, buses = sc.buses,
buses = instance.buses, lines = sc.lines,
isf = isf, isf = isf,
) )
end end
@@ -55,7 +55,7 @@ function _setup_transmission(
isf[abs.(isf).<formulation.isf_cutoff] .= 0 isf[abs.(isf).<formulation.isf_cutoff] .= 0
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0 lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
end end
model[:isf] = isf sc.isf = isf
model[:lodf] = lodf sc.lodf = lodf
return return
end end

View File

@@ -5,21 +5,26 @@
function _add_price_sensitive_load!( function _add_price_sensitive_load!(
model::JuMP.Model, model::JuMP.Model,
ps::PriceSensitiveLoad, ps::PriceSensitiveLoad,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
loads = _init(model, :loads) loads = _init(model, :loads)
net_injection = _init(model, :expr_net_injection) net_injection = _init(model, :expr_net_injection)
for t in 1:model[:instance].time for t in 1:model[:instance].time
# Decision variable # Decision variable
loads[ps.name, t] = loads[sc.name, ps.name, t] =
@variable(model, lower_bound = 0, upper_bound = ps.demand[t]) @variable(model, lower_bound = 0, upper_bound = ps.demand[t])
# Objective function terms # Objective function terms
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t]) add_to_expression!(
model[:obj],
loads[sc.name, ps.name, t],
-ps.revenue[t] * sc.probability,
)
# Net injection # Net injection
add_to_expression!( add_to_expression!(
net_injection[ps.bus.name, t], net_injection[sc.name, ps.bus.name, t],
loads[ps.name, t], loads[sc.name, ps.name, t],
-1.0, -1.0,
) )
end end

View File

@@ -0,0 +1,35 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_profiled_unit!(
model::JuMP.Model,
pu::ProfiledUnit,
sc::UnitCommitmentScenario,
)::Nothing
punits = _init(model, :prod_profiled)
net_injection = _init(model, :expr_net_injection)
for t in 1:model[:instance].time
# Decision variable
punits[sc.name, pu.name, t] = @variable(
model,
lower_bound = pu.min_power[t],
upper_bound = pu.max_power[t]
)
# Objective function terms
add_to_expression!(
model[:obj],
punits[sc.name, pu.name, t],
pu.cost[t] * sc.probability,
)
# Net injection
add_to_expression!(
net_injection[sc.name, pu.bus.name, t],
punits[sc.name, pu.name, t],
1.0,
)
end
return
end

View File

@@ -18,7 +18,7 @@ function _injection_shift_factors(;
lines::Array{TransmissionLine}, lines::Array{TransmissionLine},
) )
susceptance = _susceptance_matrix(lines) susceptance = _susceptance_matrix(lines)
incidence = _reduced_incidence_matrix(lines = lines, buses = buses) incidence = _reduced_incidence_matrix(buses = buses, lines = lines)
laplacian = transpose(incidence) * susceptance * incidence laplacian = transpose(incidence) * susceptance * incidence
isf = susceptance * incidence * inv(Array(laplacian)) isf = susceptance * incidence * inv(Array(laplacian))
return isf return isf

View File

@@ -2,54 +2,68 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing function _add_system_wide_eqs!(
_add_net_injection_eqs!(model) model::JuMP.Model,
_add_spinning_reserve_eqs!(model) sc::UnitCommitmentScenario,
_add_flexiramp_reserve_eqs!(model) )::Nothing
_add_net_injection_eqs!(model, sc)
_add_spinning_reserve_eqs!(model, sc)
_add_flexiramp_reserve_eqs!(model, sc)
return return
end end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing function _add_net_injection_eqs!(
model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
T = model[:instance].time T = model[:instance].time
net_injection = _init(model, :net_injection) net_injection = _init(model, :net_injection)
eq_net_injection = _init(model, :eq_net_injection) eq_net_injection = _init(model, :eq_net_injection)
eq_power_balance = _init(model, :eq_power_balance) eq_power_balance = _init(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses for t in 1:T, b in sc.buses
n = net_injection[b.name, t] = @variable(model) n = net_injection[sc.name, b.name, t] = @variable(model)
eq_net_injection[b.name, t] = eq_net_injection[sc.name, b.name, t] = @constraint(
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0) model,
-n + model[:expr_net_injection][sc.name, b.name, t] == 0
)
end end
for t in 1:T for t in 1:T
eq_power_balance[t] = @constraint( eq_power_balance[sc.name, t] = @constraint(
model, model,
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0 sum(net_injection[sc.name, b.name, t] for b in sc.buses) == 0
) )
end end
return return
end end
function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing function _add_spinning_reserve_eqs!(
instance = model[:instance] model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
T = model[:instance].time
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve) eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
for r in instance.reserves for r in sc.reserves
r.type == "spinning" || continue r.type == "spinning" || continue
for t in 1:instance.time for t in 1:T
# Equation (68) in Kneuven et al. (2020) # Equation (68) in Kneuven et al. (2020)
# As in Morales-España et al. (2013a) # As in Morales-España et al. (2013a)
# Akin to the alternative formulation with max_power_avail # Akin to the alternative formulation with max_power_avail
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012) # from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
eq_min_spinning_reserve[r.name, t] = @constraint( eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
model, model,
sum(model[:reserve][r.name, g.name, t] for g in r.units) + sum(
model[:reserve_shortfall][r.name, t] >= r.amount[t] model[:reserve][sc.name, r.name, g.name, t] for
g in r.thermal_units
) + model[:reserve_shortfall][sc.name, r.name, t] >=
r.amount[t]
) )
# Account for shortfall contribution to objective # Account for shortfall contribution to objective
if r.shortfall_penalty >= 0 if r.shortfall_penalty >= 0
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
r.shortfall_penalty, r.shortfall_penalty * sc.probability,
model[:reserve_shortfall][r.name, t], model[:reserve_shortfall][sc.name, r.name, t],
) )
end end
end end
@@ -57,7 +71,10 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
return return
end end
function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing function _add_flexiramp_reserve_eqs!(
model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints # Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp # through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that # provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
@@ -65,29 +82,37 @@ function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
# objective function. # objective function.
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp) eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp) eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
instance = model[:instance] T = model[:instance].time
for r in instance.reserves for r in sc.reserves
r.type == "flexiramp" || continue r.type == "flexiramp" || continue
for t in 1:instance.time for t in 1:T
# Eq. (17) in Wang & Hobbs (2016) # Eq. (17) in Wang & Hobbs (2016)
eq_min_upflexiramp[r.name, t] = @constraint( eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
model, model,
sum(model[:upflexiramp][r.name, g.name, t] for g in r.units) + model[:upflexiramp_shortfall][r.name, t] >= r.amount[t] sum(
model[:upflexiramp][sc.name, r.name, g.name, t] for
g in r.thermal_units
) + model[:upflexiramp_shortfall][sc.name, r.name, t] >=
r.amount[t]
) )
# Eq. (18) in Wang & Hobbs (2016) # Eq. (18) in Wang & Hobbs (2016)
eq_min_dwflexiramp[r.name, t] = @constraint( eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
model, model,
sum(model[:dwflexiramp][r.name, g.name, t] for g in r.units) + model[:dwflexiramp_shortfall][r.name, t] >= r.amount[t] sum(
model[:dwflexiramp][sc.name, r.name, g.name, t] for
g in r.thermal_units
) + model[:dwflexiramp_shortfall][sc.name, r.name, t] >=
r.amount[t]
) )
# Account for flexiramp shortfall contribution to objective # Account for flexiramp shortfall contribution to objective
if r.shortfall_penalty >= 0 if r.shortfall_penalty >= 0
add_to_expression!( add_to_expression!(
model[:obj], model[:obj],
r.shortfall_penalty, r.shortfall_penalty * sc.probability,
( (
model[:upflexiramp_shortfall][r.name, t] + model[:upflexiramp_shortfall][sc.name, r.name, t] +
model[:dwflexiramp_shortfall][r.name, t] model[:dwflexiramp_shortfall][sc.name, r.name, t]
), ),
) )
end end

View File

@@ -2,7 +2,13 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation) # Function for adding variables, constraints, and objective function terms
# related to the binary commitment, startup and shutdown decisions of units
function _add_unit_commitment!(
model::JuMP.Model,
g::ThermalUnit,
formulation::Formulation,
)
if !all(g.must_run) && any(g.must_run) if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported") error("Partially must-run units are not currently supported")
end end
@@ -11,22 +17,41 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
end end
# Variables # Variables
_add_production_vars!(model, g, formulation.prod_vars)
_add_spinning_reserve_vars!(model, g)
_add_flexiramp_reserve_vars!(model, g)
_add_startup_shutdown_vars!(model, g) _add_startup_shutdown_vars!(model, g)
_add_status_vars!(model, g, formulation.status_vars) _add_status_vars!(model, g, formulation.status_vars)
# Constraints and objective function # Constraints and objective function
_add_min_uptime_downtime_eqs!(model, g) _add_min_uptime_downtime_eqs!(model, g)
_add_net_injection_eqs!(model, g) _add_startup_cost_eqs!(model, g, formulation.startup_costs)
_add_production_limit_eqs!(model, g, formulation.prod_vars) _add_status_eqs!(model, g, formulation.status_vars)
_add_commitment_status_eqs!(model, g)
return
end
# Function for adding variables, constraints, and objective function terms
# related to the continuous dispatch decisions of units
function _add_unit_dispatch!(
model::JuMP.Model,
g::ThermalUnit,
formulation::Formulation,
sc::UnitCommitmentScenario,
)
# Variables
_add_production_vars!(model, g, formulation.prod_vars, sc)
_add_spinning_reserve_vars!(model, g, sc)
_add_flexiramp_reserve_vars!(model, g, sc)
# Constraints and objective function
_add_net_injection_eqs!(model, g, sc)
_add_production_limit_eqs!(model, g, formulation.prod_vars, sc)
_add_production_piecewise_linear_eqs!( _add_production_piecewise_linear_eqs!(
model, model,
g, g,
formulation.prod_vars, formulation.prod_vars,
formulation.pwl_costs, formulation.pwl_costs,
formulation.status_vars, formulation.status_vars,
sc,
) )
_add_ramp_eqs!( _add_ramp_eqs!(
model, model,
@@ -34,26 +59,31 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
formulation.prod_vars, formulation.prod_vars,
formulation.ramping, formulation.ramping,
formulation.status_vars, formulation.status_vars,
sc,
) )
_add_startup_cost_eqs!(model, g, formulation.startup_costs) _add_startup_shutdown_limit_eqs!(model, g, sc)
_add_startup_shutdown_limit_eqs!(model, g)
_add_status_eqs!(model, g, formulation.status_vars)
return return
end end
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0) _is_initially_on(g::ThermalUnit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing function _add_spinning_reserve_vars!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
reserve = _init(model, :reserve) reserve = _init(model, :reserve)
reserve_shortfall = _init(model, :reserve_shortfall) reserve_shortfall = _init(model, :reserve_shortfall)
for r in g.reserves for r in g.reserves
r.type == "spinning" || continue r.type == "spinning" || continue
for t in 1:model[:instance].time for t in 1:model[:instance].time
reserve[r.name, g.name, t] = @variable(model, lower_bound = 0) reserve[sc.name, r.name, g.name, t] =
if (r.name, t) keys(reserve_shortfall) @variable(model, lower_bound = 0)
reserve_shortfall[r.name, t] = @variable(model, lower_bound = 0) if (sc.name, r.name, t) keys(reserve_shortfall)
reserve_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0)
if r.shortfall_penalty < 0 if r.shortfall_penalty < 0
set_upper_bound(reserve_shortfall[r.name, t], 0.0) set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
end end
end end
end end
@@ -61,27 +91,37 @@ function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
return return
end end
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing function _add_flexiramp_reserve_vars!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
upflexiramp = _init(model, :upflexiramp) upflexiramp = _init(model, :upflexiramp)
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall) upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
mfg = _init(model, :mfg) mfg = _init(model, :mfg)
dwflexiramp = _init(model, :dwflexiramp) dwflexiramp = _init(model, :dwflexiramp)
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall) dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
for r in g.reserves for t in 1:model[:instance].time
r.type == "flexiramp" || continue # maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
for t in 1:model[:instance].time mfg[sc.name, g.name, t] = @variable(model, lower_bound = 0)
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016) for r in g.reserves
mfg[r.name, g.name, t] = @variable(model, lower_bound = 0) r.type == "flexiramp" || continue
upflexiramp[r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016) upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
dwflexiramp[r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016) dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
if (r.name, t) keys(upflexiramp_shortfall) if (sc.name, r.name, t) keys(upflexiramp_shortfall)
upflexiramp_shortfall[r.name, t] = upflexiramp_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0) @variable(model, lower_bound = 0)
dwflexiramp_shortfall[r.name, t] = dwflexiramp_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0) @variable(model, lower_bound = 0)
if r.shortfall_penalty < 0 if r.shortfall_penalty < 0
set_upper_bound(upflexiramp_shortfall[r.name, t], 0.0) set_upper_bound(
set_upper_bound(dwflexiramp_shortfall[r.name, t], 0.0) upflexiramp_shortfall[sc.name, r.name, t],
0.0,
)
set_upper_bound(
dwflexiramp_shortfall[sc.name, r.name, t],
0.0,
)
end end
end end
end end
@@ -89,7 +129,7 @@ function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
return return
end end
function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing function _add_startup_shutdown_vars!(model::JuMP.Model, g::ThermalUnit)::Nothing
startup = _init(model, :startup) startup = _init(model, :startup)
for t in 1:model[:instance].time for t in 1:model[:instance].time
for s in 1:length(g.startup_categories) for s in 1:length(g.startup_categories)
@@ -99,32 +139,36 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
return return
end end
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing function _add_startup_shutdown_limit_eqs!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
eq_shutdown_limit = _init(model, :eq_shutdown_limit) eq_shutdown_limit = _init(model, :eq_shutdown_limit)
eq_startup_limit = _init(model, :eq_startup_limit) eq_startup_limit = _init(model, :eq_startup_limit)
is_on = model[:is_on] is_on = model[:is_on]
prod_above = model[:prod_above] prod_above = model[:prod_above]
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
switch_off = model[:switch_off] switch_off = model[:switch_off]
switch_on = model[:switch_on] switch_on = model[:switch_on]
T = model[:instance].time T = model[:instance].time
for t in 1:T for t in 1:T
# Startup limit # Startup limit
eq_startup_limit[g.name, t] = @constraint( eq_startup_limit[sc.name, g.name, t] = @constraint(
model, model,
prod_above[g.name, t] + reserve[t] <= prod_above[sc.name, g.name, t] + reserve[t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] - (g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t] max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
) )
# Shutdown limit # Shutdown limit
if g.initial_power > g.shutdown_limit if g.initial_power > g.shutdown_limit
eq_shutdown_limit[g.name, 0] = eq_shutdown_limit[sc.name, g.name, 0] =
@constraint(model, switch_off[g.name, 1] <= 0) @constraint(model, switch_off[g.name, 1] <= 0)
end end
if t < T if t < T
eq_shutdown_limit[g.name, t] = @constraint( eq_shutdown_limit[sc.name, g.name, t] = @constraint(
model, model,
prod_above[g.name, t] <= prod_above[sc.name, g.name, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] - (g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.shutdown_limit) * max(0, g.max_power[t] - g.shutdown_limit) *
switch_off[g.name, t+1] switch_off[g.name, t+1]
@@ -136,51 +180,55 @@ end
function _add_ramp_eqs!( function _add_ramp_eqs!(
model::JuMP.Model, model::JuMP.Model,
g::Unit, g::ThermalUnit,
formulation::RampingFormulation, formulation::RampingFormulation,
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
prod_above = model[:prod_above] prod_above = model[:prod_above]
reserve = _total_reserves(model, g) reserve = _total_reserves(model, g, sc)
eq_ramp_up = _init(model, :eq_ramp_up) eq_ramp_up = _init(model, :eq_ramp_up)
eq_ramp_down = _init(model, :eq_ramp_down) eq_ramp_down = _init(model, :eq_ramp_down)
for t in 1:model[:instance].time for t in 1:model[:instance].time
# Ramp up limit # Ramp up limit
if t == 1 if t == 1
if _is_initially_on(g) == 1 if _is_initially_on(g) == 1
eq_ramp_up[g.name, t] = @constraint( eq_ramp_up[sc.name, g.name, t] = @constraint(
model, model,
prod_above[g.name, t] + reserve[t] <= prod_above[sc.name, g.name, t] + reserve[t] <=
(g.initial_power - g.min_power[t]) + g.ramp_up_limit (g.initial_power - g.min_power[t]) + g.ramp_up_limit
) )
end end
else else
eq_ramp_up[g.name, t] = @constraint( eq_ramp_up[sc.name, g.name, t] = @constraint(
model, model,
prod_above[g.name, t] + reserve[t] <= prod_above[sc.name, g.name, t] + reserve[t] <=
prod_above[g.name, t-1] + g.ramp_up_limit prod_above[sc.name, g.name, t-1] + g.ramp_up_limit
) )
end end
# Ramp down limit # Ramp down limit
if t == 1 if t == 1
if _is_initially_on(g) == 1 if _is_initially_on(g) == 1
eq_ramp_down[g.name, t] = @constraint( eq_ramp_down[sc.name, g.name, t] = @constraint(
model, model,
prod_above[g.name, t] >= prod_above[sc.name, g.name, t] >=
(g.initial_power - g.min_power[t]) - g.ramp_down_limit (g.initial_power - g.min_power[t]) - g.ramp_down_limit
) )
end end
else else
eq_ramp_down[g.name, t] = @constraint( eq_ramp_down[sc.name, g.name, t] = @constraint(
model, model,
prod_above[g.name, t] >= prod_above[sc.name, g.name, t] >=
prod_above[g.name, t-1] - g.ramp_down_limit prod_above[sc.name, g.name, t-1] - g.ramp_down_limit
) )
end end
end end
end end
function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing function _add_min_uptime_downtime_eqs!(
model::JuMP.Model,
g::ThermalUnit,
)::Nothing
is_on = model[:is_on] is_on = model[:is_on]
switch_off = model[:switch_off] switch_off = model[:switch_off]
switch_on = model[:switch_on] switch_on = model[:switch_on]
@@ -223,30 +271,52 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
end end
end end
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing function _add_commitment_status_eqs!(model::JuMP.Model, g::ThermalUnit)::Nothing
is_on = model[:is_on]
T = model[:instance].time
eq_commitment_status = _init(model, :eq_commitment_status)
for t in 1:T
if g.commitment_status[t] !== nothing
eq_commitment_status[g.name, t] = @constraint(
model,
is_on[g.name, t] == (g.commitment_status[t] ? 1.0 : 0.0)
)
end
end
return
end
function _add_net_injection_eqs!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
expr_net_injection = model[:expr_net_injection] expr_net_injection = model[:expr_net_injection]
for t in 1:model[:instance].time for t in 1:model[:instance].time
# Add to net injection expression # Add to net injection expression
add_to_expression!( add_to_expression!(
expr_net_injection[g.bus.name, t], expr_net_injection[sc.name, g.bus.name, t],
model[:prod_above][g.name, t], model[:prod_above][sc.name, g.name, t],
1.0, 1.0,
) )
add_to_expression!( add_to_expression!(
expr_net_injection[g.bus.name, t], expr_net_injection[sc.name, g.bus.name, t],
model[:is_on][g.name, t], model[:is_on][g.name, t],
g.min_power[t], g.min_power[t],
) )
end end
end end
function _total_reserves(model, g)::Vector function _total_reserves(model, g, sc)::Vector
T = model[:instance].time T = model[:instance].time
reserve = [0.0 for _ in 1:T] reserve = [0.0 for _ in 1:T]
spinning_reserves = [r for r in g.reserves if r.type == "spinning"] spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
if !isempty(spinning_reserves) if !isempty(spinning_reserves)
reserve += [ reserve += [
sum(model[:reserve][r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time sum(
model[:reserve][sc.name, r.name, g.name, t] for
r in spinning_reserves
) for t in 1:model[:instance].time
] ]
end end
return reserve return reserve

View File

@@ -10,37 +10,43 @@ solution. Useful for computing LMPs.
""" """
function fix!(model::JuMP.Model, solution::AbstractDict)::Nothing function fix!(model::JuMP.Model, solution::AbstractDict)::Nothing
instance, T = model[:instance], model[:instance].time instance, T = model[:instance], model[:instance].time
"Thermal production (MW)" keys(solution) ?
solution = Dict("s1" => solution) : nothing
is_on = model[:is_on] is_on = model[:is_on]
prod_above = model[:prod_above] prod_above = model[:prod_above]
reserve = model[:reserve] reserve = model[:reserve]
for g in instance.units for sc in instance.scenarios
for t in 1:T for g in sc.thermal_units
is_on_value = round(solution["Is on"][g.name][t])
prod_value =
round(solution["Production (MW)"][g.name][t], digits = 5)
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
JuMP.fix(
prod_above[g.name, t],
prod_value - is_on_value * g.min_power[t],
force = true,
)
end
end
for r in instance.reserves
r.type == "spinning" || continue
for g in r.units
for t in 1:T for t in 1:T
reserve_value = round( is_on_value = round(solution[sc.name]["Is on"][g.name][t])
solution["Spinning reserve (MW)"][r.name][g.name][t], prod_value = round(
solution[sc.name]["Thermal production (MW)"][g.name][t],
digits = 5, digits = 5,
) )
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
JuMP.fix( JuMP.fix(
reserve[r.name, g.name, t], prod_above[sc.name, g.name, t],
reserve_value, prod_value - is_on_value * g.min_power[t],
force = true, force = true,
) )
end end
end end
for r in sc.reserves
r.type == "spinning" || continue
for g in r.thermal_units
for t in 1:T
reserve_value = round(
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t],
digits = 5,
)
JuMP.fix(
reserve[sc.name, r.name, g.name, t],
reserve_value,
force = true,
)
end
end
end
end end
return return
end end

View File

@@ -5,13 +5,15 @@
function _enforce_transmission( function _enforce_transmission(
model::JuMP.Model, model::JuMP.Model,
violations::Vector{_Violation}, violations::Vector{_Violation},
sc::UnitCommitmentScenario,
)::Nothing )::Nothing
for v in violations for v in violations
_enforce_transmission( _enforce_transmission(
model = model, model = model,
sc = sc,
violation = v, violation = v,
isf = model[:isf], isf = sc.isf,
lodf = model[:lodf], lodf = sc.lodf,
) )
end end
return return
@@ -19,6 +21,7 @@ end
function _enforce_transmission(; function _enforce_transmission(;
model::JuMP.Model, model::JuMP.Model,
sc::UnitCommitmentScenario,
violation::_Violation, violation::_Violation,
isf::Matrix{Float64}, isf::Matrix{Float64},
lodf::Matrix{Float64}, lodf::Matrix{Float64},
@@ -31,19 +34,21 @@ function _enforce_transmission(;
if violation.outage_line === nothing if violation.outage_line === nothing
limit = violation.monitored_line.normal_flow_limit[violation.time] limit = violation.monitored_line.normal_flow_limit[violation.time]
@info @sprintf( @info @sprintf(
" %8.3f MW overflow in %-5s time %3d (pre-contingency)", " %8.3f MW overflow in %-5s time %3d (pre-contingency, scenario %s)",
violation.amount, violation.amount,
violation.monitored_line.name, violation.monitored_line.name,
violation.time, violation.time,
sc.name,
) )
else else
limit = violation.monitored_line.emergency_flow_limit[violation.time] limit = violation.monitored_line.emergency_flow_limit[violation.time]
@info @sprintf( @info @sprintf(
" %8.3f MW overflow in %-5s time %3d (outage: line %s)", " %8.3f MW overflow in %-5s time %3d (outage: line %s, scenario %s)",
violation.amount, violation.amount,
violation.monitored_line.name, violation.monitored_line.name,
violation.time, violation.time,
violation.outage_line.name, violation.outage_line.name,
sc.name,
) )
end end
@@ -51,7 +56,7 @@ function _enforce_transmission(;
t = violation.time t = violation.time
flow = @variable(model, base_name = "flow[$fm,$t]") flow = @variable(model, base_name = "flow[$fm,$t]")
v = overflow[violation.monitored_line.name, violation.time] v = overflow[sc.name, violation.monitored_line.name, violation.time]
@constraint(model, flow <= limit + v) @constraint(model, flow <= limit + v)
@constraint(model, -flow <= limit + v) @constraint(model, -flow <= limit + v)
@@ -59,23 +64,23 @@ function _enforce_transmission(;
@constraint( @constraint(
model, model,
flow == sum( flow == sum(
net_injection[b.name, violation.time] * net_injection[sc.name, b.name, violation.time] *
isf[violation.monitored_line.offset, b.offset] for isf[violation.monitored_line.offset, b.offset] for
b in instance.buses if b.offset > 0 b in sc.buses if b.offset > 0
) )
) )
else else
@constraint( @constraint(
model, model,
flow == sum( flow == sum(
net_injection[b.name, violation.time] * ( net_injection[sc.name, b.name, violation.time] * (
isf[violation.monitored_line.offset, b.offset] + ( isf[violation.monitored_line.offset, b.offset] + (
lodf[ lodf[
violation.monitored_line.offset, violation.monitored_line.offset,
violation.outage_line.offset, violation.outage_line.offset,
] * isf[violation.outage_line.offset, b.offset] ] * isf[violation.outage_line.offset, b.offset]
) )
) for b in instance.buses if b.offset > 0 ) for b in sc.buses if b.offset > 0
) )
) )
end end

View File

@@ -5,39 +5,35 @@
import Base.Threads: @threads import Base.Threads: @threads
function _find_violations( function _find_violations(
model::JuMP.Model; model::JuMP.Model,
sc::UnitCommitmentScenario;
max_per_line::Int, max_per_line::Int,
max_per_period::Int, max_per_period::Int,
) )
instance = model[:instance] instance = model[:instance]
net_injection = model[:net_injection] net_injection = model[:net_injection]
overflow = model[:overflow] overflow = model[:overflow]
length(instance.buses) > 1 || return [] length(sc.buses) > 1 || return []
violations = [] violations = []
@info "Verifying transmission limits..."
time_screening = @elapsed begin non_slack_buses = [b for b in sc.buses if b.offset > 0]
non_slack_buses = [b for b in instance.buses if b.offset > 0] net_injection_values = [
net_injection_values = [ value(net_injection[sc.name, b.name, t]) for b in non_slack_buses,
value(net_injection[b.name, t]) for b in non_slack_buses, t in 1:instance.time
t in 1:instance.time ]
] overflow_values = [
overflow_values = [ value(overflow[sc.name, lm.name, t]) for lm in sc.lines,
value(overflow[lm.name, t]) for lm in instance.lines, t in 1:instance.time
t in 1:instance.time ]
] violations = UnitCommitment._find_violations(
violations = UnitCommitment._find_violations( instance = instance,
instance = instance, sc = sc,
net_injections = net_injection_values, net_injections = net_injection_values,
overflow = overflow_values, overflow = overflow_values,
isf = model[:isf], isf = sc.isf,
lodf = model[:lodf], lodf = sc.lodf,
max_per_line = max_per_line, max_per_line = max_per_line,
max_per_period = max_per_period, max_per_period = max_per_period,
)
end
@info @sprintf(
"Verified transmission limits in %.2f seconds",
time_screening
) )
return violations return violations
end end
@@ -64,6 +60,7 @@ matrix, where L is the number of transmission lines.
""" """
function _find_violations(; function _find_violations(;
instance::UnitCommitmentInstance, instance::UnitCommitmentInstance,
sc::UnitCommitmentScenario,
net_injections::Array{Float64,2}, net_injections::Array{Float64,2},
overflow::Array{Float64,2}, overflow::Array{Float64,2},
isf::Array{Float64,2}, isf::Array{Float64,2},
@@ -71,8 +68,8 @@ function _find_violations(;
max_per_line::Int, max_per_line::Int,
max_per_period::Int, max_per_period::Int,
)::Array{_Violation,1} )::Array{_Violation,1}
B = length(instance.buses) - 1 B = length(sc.buses) - 1
L = length(instance.lines) L = length(sc.lines)
T = instance.time T = instance.time
K = nthreads() K = nthreads()
@@ -93,17 +90,17 @@ function _find_violations(;
post_v::Array{Float64} = zeros(L, L, K) # post_v[lm, lc, thread] post_v::Array{Float64} = zeros(L, L, K) # post_v[lm, lc, thread]
normal_limits::Array{Float64,2} = [ normal_limits::Array{Float64,2} = [
l.normal_flow_limit[t] + overflow[l.offset, t] for l.normal_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
l in instance.lines, t in 1:T t in 1:T
] ]
emergency_limits::Array{Float64,2} = [ emergency_limits::Array{Float64,2} = [
l.emergency_flow_limit[t] + overflow[l.offset, t] for l.emergency_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
l in instance.lines, t in 1:T t in 1:T
] ]
is_vulnerable::Array{Bool} = zeros(Bool, L) is_vulnerable::Array{Bool} = zeros(Bool, L)
for c in instance.contingencies for c in sc.contingencies
is_vulnerable[c.lines[1].offset] = true is_vulnerable[c.lines[1].offset] = true
end end
@@ -144,7 +141,7 @@ function _find_violations(;
filters[t], filters[t],
_Violation( _Violation(
time = t, time = t,
monitored_line = instance.lines[lm], monitored_line = sc.lines[lm],
outage_line = nothing, outage_line = nothing,
amount = pre_v[lm, k], amount = pre_v[lm, k],
), ),
@@ -159,8 +156,8 @@ function _find_violations(;
filters[t], filters[t],
_Violation( _Violation(
time = t, time = t,
monitored_line = instance.lines[lm], monitored_line = sc.lines[lm],
outage_line = instance.lines[lc], outage_line = sc.lines[lc],
amount = post_v[lm, lc, k], amount = post_v[lm, lc, k],
), ),
) )

View File

@@ -12,10 +12,15 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
end end
initial_time = time() initial_time = time()
large_gap = false large_gap = false
has_transmission = (length(model[:isf]) > 0) has_transmission = false
if has_transmission && method.two_phase_gap for sc in model[:instance].scenarios
set_gap(1e-2) if length(sc.isf) > 0
large_gap = true has_transmission = true
end
if has_transmission && method.two_phase_gap
set_gap(1e-2)
large_gap = true
end
end end
while true while true
time_elapsed = time() - initial_time time_elapsed = time() - initial_time
@@ -31,13 +36,41 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
JuMP.set_time_limit_sec(model, time_remaining) JuMP.set_time_limit_sec(model, time_remaining)
@info "Solving MILP..." @info "Solving MILP..."
JuMP.optimize!(model) JuMP.optimize!(model)
has_transmission || break has_transmission || break
violations = _find_violations(
model, @info "Verifying transmission limits..."
max_per_line = method.max_violations_per_line, time_screening = @elapsed begin
max_per_period = method.max_violations_per_period, violations = []
for sc in model[:instance].scenarios
push!(
violations,
_find_violations(
model,
sc,
max_per_line = method.max_violations_per_line,
max_per_period = method.max_violations_per_period,
),
)
end
end
@info @sprintf(
"Verified transmission limits in %.2f seconds",
time_screening
) )
if isempty(violations)
violations_found = false
for v in violations
if !isempty(v)
violations_found = true
end
end
if violations_found
for (i, v) in enumerate(violations)
_enforce_transmission(model, v, model[:instance].scenarios[i])
end
else
@info "No violations found" @info "No violations found"
if large_gap if large_gap
large_gap = false large_gap = false
@@ -45,8 +78,6 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
else else
break break
end end
else
_enforce_transmission(model, violations)
end end
end end
return return

View File

@@ -16,34 +16,44 @@ solution = UnitCommitment.solution(model)
""" """
function solution(model::JuMP.Model)::OrderedDict function solution(model::JuMP.Model)::OrderedDict
instance, T = model[:instance], model[:instance].time instance, T = model[:instance], model[:instance].time
function timeseries(vars, collection) function timeseries(vars, collection; sc = nothing)
return OrderedDict( if sc === nothing
b.name => [round(value(vars[b.name, t]), digits = 5) for t in 1:T] return OrderedDict(
for b in collection b.name =>
) [round(value(vars[b.name, t]), digits = 5) for t in 1:T] for
b in collection
)
else
return OrderedDict(
b.name => [
round(value(vars[sc.name, b.name, t]), digits = 5) for
t in 1:T
] for b in collection
)
end
end end
function production_cost(g) function production_cost(g, sc)
return [ return [
value(model[:is_on][g.name, t]) * g.min_power_cost[t] + sum( value(model[:is_on][g.name, t]) * g.min_power_cost[t] + sum(
Float64[ Float64[
value(model[:segprod][g.name, t, k]) * value(model[:segprod][sc.name, g.name, t, k]) *
g.cost_segments[k].cost[t] for g.cost_segments[k].cost[t] for
k in 1:length(g.cost_segments) k in 1:length(g.cost_segments)
], ],
) for t in 1:T ) for t in 1:T
] ]
end end
function production(g) function production(g, sc)
return [ return [
value(model[:is_on][g.name, t]) * g.min_power[t] + sum( value(model[:is_on][g.name, t]) * g.min_power[t] + sum(
Float64[ Float64[
value(model[:segprod][g.name, t, k]) for value(model[:segprod][sc.name, g.name, t, k]) for
k in 1:length(g.cost_segments) k in 1:length(g.cost_segments)
], ],
) for t in 1:T ) for t in 1:T
] ]
end end
function startup_cost(g) function startup_cost(g, sc)
S = length(g.startup_categories) S = length(g.startup_categories)
return [ return [
sum( sum(
@@ -53,66 +63,87 @@ function solution(model::JuMP.Model)::OrderedDict
] ]
end end
sol = OrderedDict() sol = OrderedDict()
sol["Production (MW)"] = for sc in instance.scenarios
OrderedDict(g.name => production(g) for g in instance.units) sol[sc.name] = OrderedDict()
sol["Production cost (\$)"] = if !isempty(sc.thermal_units)
OrderedDict(g.name => production_cost(g) for g in instance.units) sol[sc.name]["Thermal production (MW)"] = OrderedDict(
sol["Startup cost (\$)"] = g.name => production(g, sc) for g in sc.thermal_units
OrderedDict(g.name => startup_cost(g) for g in instance.units) )
sol["Is on"] = timeseries(model[:is_on], instance.units) sol[sc.name]["Thermal production cost (\$)"] = OrderedDict(
sol["Switch on"] = timeseries(model[:switch_on], instance.units) g.name => production_cost(g, sc) for g in sc.thermal_units
sol["Switch off"] = timeseries(model[:switch_off], instance.units) )
sol["Net injection (MW)"] = sol[sc.name]["Startup cost (\$)"] = OrderedDict(
timeseries(model[:net_injection], instance.buses) g.name => startup_cost(g, sc) for g in sc.thermal_units
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses) )
if !isempty(instance.lines) sol[sc.name]["Is on"] = timeseries(model[:is_on], sc.thermal_units)
sol["Line overflow (MW)"] = timeseries(model[:overflow], instance.lines) sol[sc.name]["Switch on"] =
timeseries(model[:switch_on], sc.thermal_units)
sol[sc.name]["Switch off"] =
timeseries(model[:switch_off], sc.thermal_units)
sol[sc.name]["Net injection (MW)"] =
timeseries(model[:net_injection], sc.buses, sc = sc)
sol[sc.name]["Load curtail (MW)"] =
timeseries(model[:curtail], sc.buses, sc = sc)
end
if !isempty(sc.lines)
sol[sc.name]["Line overflow (MW)"] =
timeseries(model[:overflow], sc.lines, sc = sc)
end
if !isempty(sc.price_sensitive_loads)
sol[sc.name]["Price-sensitive loads (MW)"] =
timeseries(model[:loads], sc.price_sensitive_loads, sc = sc)
end
if !isempty(sc.profiled_units)
sol[sc.name]["Profiled production (MW)"] =
timeseries(model[:prod_profiled], sc.profiled_units, sc = sc)
sol[sc.name]["Profiled production cost (\$)"] = OrderedDict(
pu.name => [
value(model[:prod_profiled][sc.name, pu.name, t]) *
pu.cost[t] for t in 1:instance.time
] for pu in sc.profiled_units
)
end
sol[sc.name]["Spinning reserve (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:reserve][sc.name, r.name, g.name, t]) for t in 1:instance.time
] for g in r.thermal_units
) for r in sc.reserves if r.type == "spinning"
)
sol[sc.name]["Spinning reserve shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:reserve_shortfall][sc.name, r.name, t]) for
t in 1:instance.time
] for r in sc.reserves if r.type == "spinning"
)
sol[sc.name]["Up-flexiramp (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:upflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
] for g in r.thermal_units
) for r in sc.reserves if r.type == "flexiramp"
)
sol[sc.name]["Up-flexiramp shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:upflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
] for r in sc.reserves if r.type == "flexiramp"
)
sol[sc.name]["Down-flexiramp (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:dwflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
] for g in r.thermal_units
) for r in sc.reserves if r.type == "flexiramp"
)
sol[sc.name]["Down-flexiramp shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:dwflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
] for r in sc.reserves if r.type == "flexiramp"
)
end end
if !isempty(instance.price_sensitive_loads) if length(instance.scenarios) == 1
sol["Price-sensitive loads (MW)"] = return first(values(sol))
timeseries(model[:loads], instance.price_sensitive_loads) else
return sol
end end
sol["Spinning reserve (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:reserve][r.name, g.name, t]) for
t in 1:instance.time
] for g in r.units
) for r in instance.reserves if r.type == "spinning"
)
sol["Spinning reserve shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:reserve_shortfall][r.name, t]) for
t in 1:instance.time
] for r in instance.reserves if r.type == "spinning"
)
sol["Up-flexiramp (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:upflexiramp][r.name, g.name, t]) for
t in 1:instance.time
] for g in r.units
) for r in instance.reserves if r.type == "flexiramp"
)
sol["Up-flexiramp shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:upflexiramp_shortfall][r.name, t]) for
t in 1:instance.time
] for r in instance.reserves if r.type == "flexiramp"
)
sol["Down-flexiramp (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:dwflexiramp][r.name, g.name, t]) for
t in 1:instance.time
] for g in r.units
) for r in instance.reserves if r.type == "flexiramp"
)
sol["Down-flexiramp shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:upflexiramp_shortfall][r.name, t]) for
t in 1:instance.time
] for r in instance.reserves if r.type == "flexiramp"
)
return sol
end end

View File

@@ -5,7 +5,7 @@
function set_warm_start!(model::JuMP.Model, solution::AbstractDict)::Nothing function set_warm_start!(model::JuMP.Model, solution::AbstractDict)::Nothing
instance, T = model[:instance], model[:instance].time instance, T = model[:instance], model[:instance].time
is_on = model[:is_on] is_on = model[:is_on]
for g in instance.units for g in instance.thermal_units
for t in 1:T for t in 1:T
JuMP.set_start_value(is_on[g.name, t], solution["Is on"][g.name][t]) JuMP.set_start_value(is_on[g.name, t], solution["Is on"][g.name][t])
JuMP.set_start_value( JuMP.set_start_value(

View File

@@ -5,36 +5,41 @@
using JuMP using JuMP
""" """
generate_initial_conditions!(instance, optimizer) generate_initial_conditions!(sc, optimizer)
Generates feasible initial conditions for the given instance, by constructing Generates feasible initial conditions for the given scenario, by constructing
and solving a single-period mixed-integer optimization problem, using the given and solving a single-period mixed-integer optimization problem, using the given
optimizer. The instance is modified in-place. optimizer. The scenario is modified in-place.
""" """
function generate_initial_conditions!( function generate_initial_conditions!(
instance::UnitCommitmentInstance, sc::UnitCommitmentScenario,
optimizer, optimizer,
)::Nothing )::Nothing
G = instance.units G = sc.thermal_units
B = instance.buses B = sc.buses
PU = sc.profiled_units
t = 1 t = 1
mip = JuMP.Model(optimizer) mip = JuMP.Model(optimizer)
# Decision variables # Decision variables
@variable(mip, x[G], Bin) @variable(mip, x[G], Bin)
@variable(mip, p[G] >= 0) @variable(mip, p[G] >= 0)
@variable(mip, pu[PU])
# Constraint: Minimum power # Constraint: Minimum power
@constraint(mip, min_power[g in G], p[g] >= g.min_power[t] * x[g]) @constraint(mip, min_power[g in G], p[g] >= g.min_power[t] * x[g])
@constraint(mip, pu_min_power[k in PU], pu[k] >= k.min_power[t])
# Constraint: Maximum power # Constraint: Maximum power
@constraint(mip, max_power[g in G], p[g] <= g.max_power[t] * x[g]) @constraint(mip, max_power[g in G], p[g] <= g.max_power[t] * x[g])
@constraint(mip, pu_max_power[k in PU], pu[k] <= k.max_power[t])
# Constraint: Production equals demand # Constraint: Production equals demand
@constraint( @constraint(
mip, mip,
power_balance, power_balance,
sum(b.load[t] for b in B) == sum(p[g] for g in G) sum(b.load[t] for b in B) ==
sum(p[g] for g in G) + sum(pu[k] for k in PU)
) )
# Constraint: Must run # Constraint: Must run
@@ -58,7 +63,12 @@ function generate_initial_conditions!(
return c / mw return c / mw
end end
end end
@objective(mip, Min, sum(p[g] * cost_slope(g) for g in G)) @objective(
mip,
Min,
sum(p[g] * cost_slope(g) for g in G) +
sum(pu[k] * k.cost[t] for k in PU)
)
JuMP.optimize!(mip) JuMP.optimize!(mip)

View File

@@ -6,6 +6,7 @@ module XavQiuAhm2021
using Distributions using Distributions
import ..UnitCommitmentInstance import ..UnitCommitmentInstance
import ..UnitCommitmentScenario
""" """
struct Randomization struct Randomization
@@ -119,10 +120,10 @@ end
function _randomize_costs( function _randomize_costs(
rng, rng,
instance::UnitCommitmentInstance, sc::UnitCommitmentScenario,
distribution, distribution,
)::Nothing )::Nothing
for unit in instance.units for unit in sc.thermal_units
α = rand(rng, distribution) α = rand(rng, distribution)
unit.min_power_cost *= α unit.min_power_cost *= α
for k in unit.cost_segments for k in unit.cost_segments
@@ -132,22 +133,24 @@ function _randomize_costs(
s.cost *= α s.cost *= α
end end
end end
for pu in sc.profiled_units
α = rand(rng, distribution)
pu.cost *= α
end
return return
end end
function _randomize_load_share( function _randomize_load_share(
rng, rng,
instance::UnitCommitmentInstance, sc::UnitCommitmentScenario,
distribution, distribution,
)::Nothing )::Nothing
α = rand(rng, distribution, length(instance.buses)) α = rand(rng, distribution, length(sc.buses))
for t in 1:instance.time for t in 1:sc.time
total = sum(bus.load[t] for bus in instance.buses) total = sum(bus.load[t] for bus in sc.buses)
den = sum( den =
bus.load[t] / total * α[i] for sum(bus.load[t] / total * α[i] for (i, bus) in enumerate(sc.buses))
(i, bus) in enumerate(instance.buses) for (i, bus) in enumerate(sc.buses)
)
for (i, bus) in enumerate(instance.buses)
bus.load[t] *= α[i] / den bus.load[t] *= α[i] / den
end end
end end
@@ -156,12 +159,12 @@ end
function _randomize_load_profile( function _randomize_load_profile(
rng, rng,
instance::UnitCommitmentInstance, sc::UnitCommitmentScenario,
params::Randomization, params::Randomization,
)::Nothing )::Nothing
# Generate new system load # Generate new system load
system_load = [1.0] system_load = [1.0]
for t in 2:instance.time for t in 2:sc.time
idx = (t - 1) % length(params.load_profile_mu) + 1 idx = (t - 1) % length(params.load_profile_mu) + 1
gamma = rand( gamma = rand(
rng, rng,
@@ -169,14 +172,14 @@ function _randomize_load_profile(
) )
push!(system_load, system_load[t-1] * gamma) push!(system_load, system_load[t-1] * gamma)
end end
capacity = sum(maximum(u.max_power) for u in instance.units) capacity = sum(maximum(u.max_power) for u in sc.thermal_units)
peak_load = rand(rng, params.peak_load) * capacity peak_load = rand(rng, params.peak_load) * capacity
system_load = system_load ./ maximum(system_load) .* peak_load system_load = system_load ./ maximum(system_load) .* peak_load
# Scale bus loads to match the new system load # Scale bus loads to match the new system load
prev_system_load = sum(b.load for b in instance.buses) prev_system_load = sum(b.load for b in sc.buses)
for b in instance.buses for b in sc.buses
for t in 1:instance.time for t in 1:sc.time
b.load[t] *= system_load[t] / prev_system_load[t] b.load[t] *= system_load[t] / prev_system_load[t]
end end
end end
@@ -199,15 +202,26 @@ function randomize!(
instance::UnitCommitment.UnitCommitmentInstance, instance::UnitCommitment.UnitCommitmentInstance,
method::XavQiuAhm2021.Randomization; method::XavQiuAhm2021.Randomization;
rng = MersenneTwister(), rng = MersenneTwister(),
)::Nothing
for sc in instance.scenarios
randomize!(sc, method; rng)
end
return
end
function randomize!(
sc::UnitCommitment.UnitCommitmentScenario,
method::XavQiuAhm2021.Randomization;
rng = MersenneTwister(),
)::Nothing )::Nothing
if method.randomize_costs if method.randomize_costs
XavQiuAhm2021._randomize_costs(rng, instance, method.cost) XavQiuAhm2021._randomize_costs(rng, sc, method.cost)
end end
if method.randomize_load_share if method.randomize_load_share
XavQiuAhm2021._randomize_load_share(rng, instance, method.load_share) XavQiuAhm2021._randomize_load_share(rng, sc, method.load_share)
end end
if method.randomize_load_profile if method.randomize_load_profile
XavQiuAhm2021._randomize_load_profile(rng, instance, method) XavQiuAhm2021._randomize_load_profile(rng, sc, method)
end end
return return
end end

View File

@@ -24,31 +24,38 @@ function slice(
)::UnitCommitmentInstance )::UnitCommitmentInstance
modified = deepcopy(instance) modified = deepcopy(instance)
modified.time = length(range) modified.time = length(range)
modified.power_balance_penalty = modified.power_balance_penalty[range] for sc in modified.scenarios
for r in modified.reserves sc.power_balance_penalty = sc.power_balance_penalty[range]
r.amount = r.amount[range] for r in sc.reserves
end r.amount = r.amount[range]
for u in modified.units end
u.max_power = u.max_power[range] for u in sc.thermal_units
u.min_power = u.min_power[range] u.max_power = u.max_power[range]
u.must_run = u.must_run[range] u.min_power = u.min_power[range]
u.min_power_cost = u.min_power_cost[range] u.must_run = u.must_run[range]
for s in u.cost_segments u.min_power_cost = u.min_power_cost[range]
s.mw = s.mw[range] for s in u.cost_segments
s.cost = s.cost[range] s.mw = s.mw[range]
s.cost = s.cost[range]
end
end
for pu in sc.profiled_units
pu.max_power = pu.max_power[range]
pu.min_power = pu.min_power[range]
pu.cost = pu.cost[range]
end
for b in sc.buses
b.load = b.load[range]
end
for l in sc.lines
l.normal_flow_limit = l.normal_flow_limit[range]
l.emergency_flow_limit = l.emergency_flow_limit[range]
l.flow_limit_penalty = l.flow_limit_penalty[range]
end
for ps in sc.price_sensitive_loads
ps.demand = ps.demand[range]
ps.revenue = ps.revenue[range]
end end
end
for b in modified.buses
b.load = b.load[range]
end
for l in modified.lines
l.normal_flow_limit = l.normal_flow_limit[range]
l.emergency_flow_limit = l.emergency_flow_limit[range]
l.flow_limit_penalty = l.flow_limit_penalty[range]
end
for ps in modified.price_sensitive_loads
ps.demand = ps.demand[range]
ps.revenue = ps.revenue[range]
end end
return modified return modified
end end

View File

@@ -3,19 +3,19 @@
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
""" """
repair!(instance) repair!(sc)
Verifies that the given unit commitment instance is valid and automatically Verifies that the given unit commitment scenario is valid and automatically
fixes some validation errors if possible, issuing a warning for each error fixes some validation errors if possible, issuing a warning for each error
found. If a validation error cannot be automatically fixed, issues an found. If a validation error cannot be automatically fixed, issues an
exception. exception.
Returns the number of validation errors found. Returns the number of validation errors found.
""" """
function repair!(instance::UnitCommitmentInstance)::Int function repair!(sc::UnitCommitmentScenario)::Int
n_errors = 0 n_errors = 0
for g in instance.units for g in sc.thermal_units
# Startup costs and delays must be increasing # Startup costs and delays must be increasing
for s in 2:length(g.startup_categories) for s in 2:length(g.startup_categories)
@@ -38,7 +38,7 @@ function repair!(instance::UnitCommitmentInstance)::Int
end end
end end
for t in 1:instance.time for t in 1:sc.time
# Production cost curve should be convex # Production cost curve should be convex
for k in 2:length(g.cost_segments) for k in 2:length(g.cost_segments)
cost = g.cost_segments[k].cost[t] cost = g.cost_segments[k].cost[t]

View File

@@ -28,6 +28,8 @@ function validate(
instance::UnitCommitmentInstance, instance::UnitCommitmentInstance,
solution::Union{Dict,OrderedDict}, solution::Union{Dict,OrderedDict},
)::Bool )::Bool
"Thermal production (MW)" keys(solution) ?
solution = Dict("s1" => solution) : nothing
err_count = 0 err_count = 0
err_count += _validate_units(instance, solution) err_count += _validate_units(instance, solution)
err_count += _validate_reserve_and_demand(instance, solution) err_count += _validate_reserve_and_demand(instance, solution)
@@ -42,358 +44,407 @@ end
function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01) function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
err_count = 0 err_count = 0
for sc in instance.scenarios
for unit in instance.units for unit in sc.thermal_units
production = solution["Production (MW)"][unit.name] production = solution[sc.name]["Thermal production (MW)"][unit.name]
reserve = [0.0 for _ in 1:instance.time] reserve = [0.0 for _ in 1:instance.time]
spinning_reserves = [r for r in unit.reserves if r.type == "spinning"] spinning_reserves =
if !isempty(spinning_reserves) [r for r in unit.reserves if r.type == "spinning"]
reserve += sum( if !isempty(spinning_reserves)
solution["Spinning reserve (MW)"][r.name][unit.name] for reserve += sum(
r in spinning_reserves solution[sc.name]["Spinning reserve (MW)"][r.name][unit.name]
) for r in spinning_reserves
end )
actual_production_cost = solution["Production cost (\$)"][unit.name]
actual_startup_cost = solution["Startup cost (\$)"][unit.name]
is_on = bin(solution["Is on"][unit.name])
for t in 1:instance.time
# Auxiliary variables
if t == 1
is_starting_up = (unit.initial_status < 0) && is_on[t]
is_shutting_down = (unit.initial_status > 0) && !is_on[t]
ramp_up =
max(0, production[t] + reserve[t] - unit.initial_power)
ramp_down = max(0, unit.initial_power - production[t])
else
is_starting_up = !is_on[t-1] && is_on[t]
is_shutting_down = is_on[t-1] && !is_on[t]
ramp_up = max(0, production[t] + reserve[t] - production[t-1])
ramp_down = max(0, production[t-1] - production[t])
end end
actual_production_cost =
solution[sc.name]["Thermal production cost (\$)"][unit.name]
actual_startup_cost =
solution[sc.name]["Startup cost (\$)"][unit.name]
is_on = bin(solution[sc.name]["Is on"][unit.name])
# Compute production costs for t in 1:instance.time
production_cost, startup_cost = 0, 0 # Auxiliary variables
if is_on[t] if t == 1
production_cost += unit.min_power_cost[t] is_starting_up = (unit.initial_status < 0) && is_on[t]
residual = max(0, production[t] - unit.min_power[t]) is_shutting_down = (unit.initial_status > 0) && !is_on[t]
for s in unit.cost_segments ramp_up =
cleared = min(residual, s.mw[t]) max(0, production[t] + reserve[t] - unit.initial_power)
production_cost += cleared * s.cost[t] ramp_down = max(0, unit.initial_power - production[t])
residual = max(0, residual - s.mw[t]) else
is_starting_up = !is_on[t-1] && is_on[t]
is_shutting_down = is_on[t-1] && !is_on[t]
ramp_up =
max(0, production[t] + reserve[t] - production[t-1])
ramp_down = max(0, production[t-1] - production[t])
end end
end
# Production should be non-negative # Compute production costs
if production[t] < -tol production_cost, startup_cost = 0, 0
@error @sprintf( if is_on[t]
"Unit %s produces negative amount of power at time %d (%.2f)", production_cost += unit.min_power_cost[t]
unit.name, residual = max(0, production[t] - unit.min_power[t])
t, for s in unit.cost_segments
production[t] cleared = min(residual, s.mw[t])
) production_cost += cleared * s.cost[t]
err_count += 1 residual = max(0, residual - s.mw[t])
end end
end
# Verify must-run # Production should be non-negative
if !is_on[t] && unit.must_run[t] if production[t] < -tol
@error @sprintf( @error @sprintf(
"Must-run unit %s is offline at time %d", "Unit %s produces negative amount of power at time %d (%.2f)",
unit.name, unit.name,
t t,
) production[t]
err_count += 1 )
end err_count += 1
end
# Verify reserve eligibility # Verify must-run
for r in instance.reserves if !is_on[t] && unit.must_run[t]
if r.type == "spinning" @error @sprintf(
if unit r.units && "Must-run unit %s is offline at time %d",
(unit in keys(solution["Spinning reserve (MW)"][r.name])) unit.name,
t
)
err_count += 1
end
# Verify reserve eligibility
for r in sc.reserves
if r.type == "spinning"
if unit r.thermal_units && (
unit in keys(
solution[sc.name]["Spinning reserve (MW)"][r.name],
)
)
@error @sprintf(
"Unit %s is not eligible to provide reserve %s",
unit.name,
r.name,
)
err_count += 1
end
end
end
# If unit is on, must produce at least its minimum power
if is_on[t] && (production[t] < unit.min_power[t] - tol)
@error @sprintf(
"Unit %s produces below its minimum limit at time %d (%.2f < %.2f)",
unit.name,
t,
production[t],
unit.min_power[t]
)
err_count += 1
end
# If unit is on, must produce at most its maximum power
if is_on[t] &&
(production[t] + reserve[t] > unit.max_power[t] + tol)
@error @sprintf(
"Unit %s produces above its maximum limit at time %d (%.2f + %.2f> %.2f)",
unit.name,
t,
production[t],
reserve[t],
unit.max_power[t]
)
err_count += 1
end
# If unit is off, must produce zero
if !is_on[t] && production[t] + reserve[t] > tol
@error @sprintf(
"Unit %s produces power at time %d while off (%.2f + %.2f > 0)",
unit.name,
t,
production[t],
reserve[t],
)
err_count += 1
end
# Startup limit
if is_starting_up && (ramp_up > unit.startup_limit + tol)
@error @sprintf(
"Unit %s exceeds startup limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_up,
unit.startup_limit
)
err_count += 1
end
# Shutdown limit
if is_shutting_down && (ramp_down > unit.shutdown_limit + tol)
@error @sprintf(
"Unit %s exceeds shutdown limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_down,
unit.shutdown_limit
)
err_count += 1
end
# Ramp-up limit
if !is_starting_up &&
!is_shutting_down &&
(ramp_up > unit.ramp_up_limit + tol)
@error @sprintf(
"Unit %s exceeds ramp up limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_up,
unit.ramp_up_limit
)
err_count += 1
end
# Ramp-down limit
if !is_starting_up &&
!is_shutting_down &&
(ramp_down > unit.ramp_down_limit + tol)
@error @sprintf(
"Unit %s exceeds ramp down limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_down,
unit.ramp_down_limit
)
err_count += 1
end
# Verify startup costs & minimum downtime
if is_starting_up
# Calculate how much time the unit has been offline
time_down = 0
for k in 1:(t-1)
if !is_on[t-k]
time_down += 1
else
break
end
end
if (t == time_down + 1) && (unit.initial_status < 0)
time_down -= unit.initial_status
end
# Calculate startup costs
for c in unit.startup_categories
if time_down >= c.delay
startup_cost = c.cost
end
end
# Check minimum downtime
if time_down < unit.min_downtime
@error @sprintf( @error @sprintf(
"Unit %s is not eligible to provide reserve %s", "Unit %s violates minimum downtime at time %d",
unit.name, unit.name,
r.name, t
) )
err_count += 1 err_count += 1
end end
end end
end
# If unit is on, must produce at least its minimum power # Verify minimum uptime
if is_on[t] && (production[t] < unit.min_power[t] - tol) if is_shutting_down
@error @sprintf(
"Unit %s produces below its minimum limit at time %d (%.2f < %.2f)",
unit.name,
t,
production[t],
unit.min_power[t]
)
err_count += 1
end
# If unit is on, must produce at most its maximum power # Calculate how much time the unit has been online
if is_on[t] && time_up = 0
(production[t] + reserve[t] > unit.max_power[t] + tol) for k in 1:(t-1)
@error @sprintf( if is_on[t-k]
"Unit %s produces above its maximum limit at time %d (%.2f + %.2f> %.2f)", time_up += 1
unit.name, else
t, break
production[t], end
reserve[t], end
unit.max_power[t] if (t == time_up + 1) && (unit.initial_status > 0)
) time_up += unit.initial_status
err_count += 1
end
# If unit is off, must produce zero
if !is_on[t] && production[t] + reserve[t] > tol
@error @sprintf(
"Unit %s produces power at time %d while off (%.2f + %.2f > 0)",
unit.name,
t,
production[t],
reserve[t],
)
err_count += 1
end
# Startup limit
if is_starting_up && (ramp_up > unit.startup_limit + tol)
@error @sprintf(
"Unit %s exceeds startup limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_up,
unit.startup_limit
)
err_count += 1
end
# Shutdown limit
if is_shutting_down && (ramp_down > unit.shutdown_limit + tol)
@error @sprintf(
"Unit %s exceeds shutdown limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_down,
unit.shutdown_limit
)
err_count += 1
end
# Ramp-up limit
if !is_starting_up &&
!is_shutting_down &&
(ramp_up > unit.ramp_up_limit + tol)
@error @sprintf(
"Unit %s exceeds ramp up limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_up,
unit.ramp_up_limit
)
err_count += 1
end
# Ramp-down limit
if !is_starting_up &&
!is_shutting_down &&
(ramp_down > unit.ramp_down_limit + tol)
@error @sprintf(
"Unit %s exceeds ramp down limit at time %d (%.2f > %.2f)",
unit.name,
t,
ramp_down,
unit.ramp_down_limit
)
err_count += 1
end
# Verify startup costs & minimum downtime
if is_starting_up
# Calculate how much time the unit has been offline
time_down = 0
for k in 1:(t-1)
if !is_on[t-k]
time_down += 1
else
break
end end
end
if (t == time_down + 1) && (unit.initial_status < 0)
time_down -= unit.initial_status
end
# Calculate startup costs # Check minimum uptime
for c in unit.startup_categories if time_up < unit.min_uptime
if time_down >= c.delay @error @sprintf(
startup_cost = c.cost "Unit %s violates minimum uptime at time %d",
unit.name,
t
)
err_count += 1
end end
end end
# Check minimum downtime # Verify production costs
if time_down < unit.min_downtime if abs(actual_production_cost[t] - production_cost) > 1.00
@error @sprintf( @error @sprintf(
"Unit %s violates minimum downtime at time %d", "Unit %s has unexpected production cost at time %d (%.2f should be %.2f)",
unit.name, unit.name,
t t,
actual_production_cost[t],
production_cost
)
err_count += 1
end
# Verify startup costs
if abs(actual_startup_cost[t] - startup_cost) > 1.00
@error @sprintf(
"Unit %s has unexpected startup cost at time %d (%.2f should be %.2f)",
unit.name,
t,
actual_startup_cost[t],
startup_cost
) )
err_count += 1 err_count += 1
end end
end end
end
for pu in sc.profiled_units
production = solution[sc.name]["Profiled production (MW)"][pu.name]
# Verify minimum uptime for t in 1:instance.time
if is_shutting_down # Unit must produce at least its minimum power
if production[t] < pu.min_power[t] - tol
# Calculate how much time the unit has been online
time_up = 0
for k in 1:(t-1)
if is_on[t-k]
time_up += 1
else
break
end
end
if (t == time_up + 1) && (unit.initial_status > 0)
time_up += unit.initial_status
end
# Check minimum uptime
if time_up < unit.min_uptime
@error @sprintf( @error @sprintf(
"Unit %s violates minimum uptime at time %d", "Profiled unit %s produces below its minimum limit at time %d (%.2f < %.2f)",
unit.name, pu.name,
t t,
production[t],
pu.min_power[t]
) )
err_count += 1 err_count += 1
end end
end
# Verify production costs # Unit must produce at most its maximum power
if abs(actual_production_cost[t] - production_cost) > 1.00 if production[t] > pu.max_power[t] + tol
@error @sprintf( @error @sprintf(
"Unit %s has unexpected production cost at time %d (%.2f should be %.2f)", "Profiled unit %s produces above its maximum limit at time %d (%.2f > %.2f)",
unit.name, pu.name,
t, t,
actual_production_cost[t], production[t],
production_cost pu.max_power[t]
) )
err_count += 1 err_count += 1
end end
# Verify startup costs
if abs(actual_startup_cost[t] - startup_cost) > 1.00
@error @sprintf(
"Unit %s has unexpected startup cost at time %d (%.2f should be %.2f)",
unit.name,
t,
actual_startup_cost[t],
startup_cost
)
err_count += 1
end end
end end
end end
return err_count return err_count
end end
function _validate_reserve_and_demand(instance, solution, tol = 0.01) function _validate_reserve_and_demand(instance, solution, tol = 0.01)
err_count = 0 err_count = 0
for t in 1:instance.time for sc in instance.scenarios
load_curtail = 0 for t in 1:instance.time
fixed_load = sum(b.load[t] for b in instance.buses) load_curtail = 0
ps_load = 0 fixed_load = sum(b.load[t] for b in sc.buses)
if length(instance.price_sensitive_loads) > 0 ps_load = 0
ps_load = sum( production = 0
solution["Price-sensitive loads (MW)"][ps.name][t] for if length(sc.price_sensitive_loads) > 0
ps in instance.price_sensitive_loads ps_load = sum(
) solution[sc.name]["Price-sensitive loads (MW)"][ps.name][t]
end for ps in sc.price_sensitive_loads
production =
sum(solution["Production (MW)"][g.name][t] for g in instance.units)
if "Load curtail (MW)" in keys(solution)
load_curtail = sum(
solution["Load curtail (MW)"][b.name][t] for
b in instance.buses
)
end
balance = fixed_load - load_curtail - production + ps_load
# Verify that production equals demand
if abs(balance) > tol
@error @sprintf(
"Non-zero power balance at time %d (%.2f + %.2f - %.2f - %.2f != 0)",
t,
fixed_load,
ps_load,
load_curtail,
production,
)
err_count += 1
end
# Verify reserves
for r in instance.reserves
if r.type == "spinning"
provided = sum(
solution["Spinning reserve (MW)"][r.name][g.name][t] for
g in r.units
) )
shortfall = end
solution["Spinning reserve shortfall (MW)"][r.name][t] if length(sc.thermal_units) > 0
required = r.amount[t] production = sum(
solution[sc.name]["Thermal production (MW)"][g.name][t]
if provided + shortfall < required - tol for g in sc.thermal_units
@error @sprintf(
"Insufficient reserve %s at time %d (%.2f + %.2f < %.2f)",
r.name,
t,
provided,
shortfall,
required,
)
end
elseif r.type == "flexiramp"
upflexiramp = sum(
solution["Up-flexiramp (MW)"][r.name][g.name][t] for
g in r.units
) )
upflexiramp_shortfall = end
solution["Up-flexiramp shortfall (MW)"][r.name][t] if length(sc.profiled_units) > 0
production += sum(
if upflexiramp + upflexiramp_shortfall < r.amount[t] - tol solution[sc.name]["Profiled production (MW)"][pu.name][t]
@error @sprintf( for pu in sc.profiled_units
"Insufficient up-flexiramp at time %d (%.2f + %.2f < %.2f)",
t,
upflexiramp,
upflexiramp_shortfall,
r.amount[t],
)
err_count += 1
end
dwflexiramp = sum(
solution["Down-flexiramp (MW)"][r.name][g.name][t] for
g in r.units
) )
dwflexiramp_shortfall = end
solution["Down-flexiramp shortfall (MW)"][r.name][t] if "Load curtail (MW)" in keys(solution)
load_curtail = sum(
solution[sc.name]["Load curtail (MW)"][b.name][t] for
b in sc.buses
)
end
balance = fixed_load - load_curtail - production + ps_load
if dwflexiramp + dwflexiramp_shortfall < r.amount[t] - tol # Verify that production equals demand
@error @sprintf( if abs(balance) > tol
"Insufficient down-flexiramp at time %d (%.2f + %.2f < %.2f)", @error @sprintf(
t, "Non-zero power balance at time %d (%.2f + %.2f - %.2f - %.2f != 0)",
dwflexiramp, t,
dwflexiramp_shortfall, fixed_load,
r.amount[t], ps_load,
load_curtail,
production,
)
err_count += 1
end
# Verify reserves
for r in sc.reserves
if r.type == "spinning"
provided = sum(
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t]
for g in r.thermal_units
) )
err_count += 1 shortfall =
solution[sc.name]["Spinning reserve shortfall (MW)"][r.name][t]
required = r.amount[t]
if provided + shortfall < required - tol
@error @sprintf(
"Insufficient reserve %s at time %d (%.2f + %.2f < %.2f)",
r.name,
t,
provided,
shortfall,
required,
)
end
elseif r.type == "flexiramp"
upflexiramp = sum(
solution[sc.name]["Up-flexiramp (MW)"][r.name][g.name][t]
for g in r.thermal_units
)
upflexiramp_shortfall =
solution[sc.name]["Up-flexiramp shortfall (MW)"][r.name][t]
if upflexiramp + upflexiramp_shortfall < r.amount[t] - tol
@error @sprintf(
"Insufficient up-flexiramp at time %d (%.2f + %.2f < %.2f)",
t,
upflexiramp,
upflexiramp_shortfall,
r.amount[t],
)
err_count += 1
end
dwflexiramp = sum(
solution[sc.name]["Down-flexiramp (MW)"][r.name][g.name][t]
for g in r.thermal_units
)
dwflexiramp_shortfall =
solution[sc.name]["Down-flexiramp shortfall (MW)"][r.name][t]
if dwflexiramp + dwflexiramp_shortfall < r.amount[t] - tol
@error @sprintf(
"Insufficient down-flexiramp at time %d (%.2f + %.2f < %.2f)",
t,
dwflexiramp,
dwflexiramp_shortfall,
r.amount[t],
)
err_count += 1
end
else
error("Unknown reserve type: $(r.type)")
end end
else
error("Unknown reserve type: $(r.type)")
end end
end end
end end

View File

@@ -1,25 +1,20 @@
name = "UnitCommitmentT"
uuid = "a3b7a17a-ab64-45e4-a924-cd5ae7dc644e"
authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps] [deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76" Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63" GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572" JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee" MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877"
[compat]
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
JSON = "0.21"
JuMP = "1"
MathOptInterface = "1"
PackageCompiler = "1"
julia = "1"

BIN
test/fixtures/aelmp_simple.json.gz vendored Normal file

Binary file not shown.

Binary file not shown.

BIN
test/fixtures/case14-profiled.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_1.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_2.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_3.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_4.json.gz vendored Normal file

Binary file not shown.

View File

@@ -1,20 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment
@testset "read_egret_solution" begin
solution =
UnitCommitment.read_egret_solution("$FIXTURES/egret_output.json.gz")
for attr in ["Is on", "Production (MW)", "Production cost (\$)"]
@test attr in keys(solution)
@test "115_STEAM_1" in keys(solution[attr])
@test length(solution[attr]["115_STEAM_1"]) == 48
end
@test solution["Production cost (\$)"]["315_CT_6"][15:20] ==
[0.0, 0.0, 884.44, 1470.71, 1470.71, 884.44]
@test solution["Startup cost (\$)"]["315_CT_6"][15:20] ==
[0.0, 0.0, 5665.23, 0.0, 0.0, 0.0]
@test length(keys(solution["Is on"])) == 154
end

View File

@@ -1,18 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@testset "read v0.2" begin
instance = UnitCommitment.read("$FIXTURES/ucjl-0.2.json.gz")
@test length(instance.reserves_by_name["r1"].amount) == 4
@test instance.units_by_name["g2"].reserves[1].name == "r1"
end
@testset "read v0.3" begin
instance = UnitCommitment.read("$FIXTURES/ucjl-0.3.json.gz")
@test length(instance.units) == 6
@test length(instance.buses) == 14
@test length(instance.lines) == 20
end

View File

@@ -1,126 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@testset "read_benchmark" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
@test length(instance.lines) == 20
@test length(instance.buses) == 14
@test length(instance.units) == 6
@test length(instance.contingencies) == 19
@test length(instance.price_sensitive_loads) == 1
@test instance.time == 4
@test instance.lines[5].name == "l5"
@test instance.lines[5].source.name == "b2"
@test instance.lines[5].target.name == "b5"
@test instance.lines[5].reactance 0.17388
@test instance.lines[5].susceptance 10.037550333
@test instance.lines[5].normal_flow_limit == [1e8 for t in 1:4]
@test instance.lines[5].emergency_flow_limit == [1e8 for t in 1:4]
@test instance.lines[5].flow_limit_penalty == [5e3 for t in 1:4]
@test instance.lines_by_name["l5"].name == "l5"
@test instance.lines[1].name == "l1"
@test instance.lines[1].source.name == "b1"
@test instance.lines[1].target.name == "b2"
@test instance.lines[1].reactance 0.059170
@test instance.lines[1].susceptance 29.496860773945
@test instance.lines[1].normal_flow_limit == [300.0 for t in 1:4]
@test instance.lines[1].emergency_flow_limit == [400.0 for t in 1:4]
@test instance.lines[1].flow_limit_penalty == [1e3 for t in 1:4]
@test instance.buses[9].name == "b9"
@test instance.buses[9].load == [35.36638, 33.25495, 31.67138, 31.14353]
@test instance.buses_by_name["b9"].name == "b9"
@test instance.reserves[1].name == "r1"
@test instance.reserves[1].type == "spinning"
@test instance.reserves[1].amount == [100.0, 100.0, 100.0, 100.0]
@test instance.reserves_by_name["r1"].name == "r1"
unit = instance.units[1]
@test unit.name == "g1"
@test unit.bus.name == "b1"
@test unit.ramp_up_limit == 1e6
@test unit.ramp_down_limit == 1e6
@test unit.startup_limit == 1e6
@test unit.shutdown_limit == 1e6
@test unit.must_run == [false for t in 1:4]
@test unit.min_power_cost == [1400.0 for t in 1:4]
@test unit.min_uptime == 1
@test unit.min_downtime == 1
for t in 1:1
@test unit.cost_segments[1].mw[t] == 10.0
@test unit.cost_segments[2].mw[t] == 20.0
@test unit.cost_segments[3].mw[t] == 5.0
@test unit.cost_segments[1].cost[t] 20.0
@test unit.cost_segments[2].cost[t] 30.0
@test unit.cost_segments[3].cost[t] 40.0
end
@test length(unit.startup_categories) == 3
@test unit.startup_categories[1].delay == 1
@test unit.startup_categories[2].delay == 2
@test unit.startup_categories[3].delay == 3
@test unit.startup_categories[1].cost == 1000.0
@test unit.startup_categories[2].cost == 1500.0
@test unit.startup_categories[3].cost == 2000.0
@test length(unit.reserves) == 0
@test instance.units_by_name["g1"].name == "g1"
unit = instance.units[2]
@test unit.name == "g2"
@test unit.must_run == [false for t in 1:4]
@test length(unit.reserves) == 1
unit = instance.units[3]
@test unit.name == "g3"
@test unit.bus.name == "b3"
@test unit.ramp_up_limit == 70.0
@test unit.ramp_down_limit == 70.0
@test unit.startup_limit == 70.0
@test unit.shutdown_limit == 70.0
@test unit.must_run == [true for t in 1:4]
@test unit.min_power_cost == [0.0 for t in 1:4]
@test unit.min_uptime == 1
@test unit.min_downtime == 1
for t in 1:4
@test unit.cost_segments[1].mw[t] 33
@test unit.cost_segments[2].mw[t] 33
@test unit.cost_segments[3].mw[t] 34
@test unit.cost_segments[1].cost[t] 33.75
@test unit.cost_segments[2].cost[t] 38.04
@test unit.cost_segments[3].cost[t] 44.77853
end
@test length(unit.reserves) == 1
@test unit.reserves[1].name == "r1"
@test instance.contingencies[1].lines == [instance.lines[1]]
@test instance.contingencies[1].units == []
@test instance.contingencies[1].name == "c1"
@test instance.contingencies_by_name["c1"].name == "c1"
load = instance.price_sensitive_loads[1]
@test load.name == "ps1"
@test load.bus.name == "b3"
@test load.revenue == [100.0 for t in 1:4]
@test load.demand == [50.0 for t in 1:4]
@test instance.price_sensitive_loads_by_name["ps1"].name == "ps1"
end
@testset "read_benchmark sub-hourly" begin
instance = UnitCommitment.read("$FIXTURES/case14-sub-hourly.json.gz")
@test instance.time == 4
unit = instance.units[1]
@test unit.name == "g1"
@test unit.min_uptime == 2
@test unit.min_downtime == 2
@test length(unit.startup_categories) == 3
@test unit.startup_categories[1].delay == 2
@test unit.startup_categories[2].delay == 4
@test unit.startup_categories[3].delay == 6
@test unit.initial_status == -200
end

View File

@@ -1,84 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment
using JuMP
using Cbc
using JSON
import UnitCommitment:
ArrCon2000,
CarArr2006,
DamKucRajAta2016,
Formulation,
Gar1962,
KnuOstWat2018,
MorLatRam2013,
PanGua2016,
XavQiuWanThi2019,
WanHob2016
function _test(
formulation::Formulation;
instances = ["case14"],
dump::Bool = false,
)::Nothing
for instance_name in instances
instance = UnitCommitment.read("$(FIXTURES)/$(instance_name).json.gz")
model = UnitCommitment.build_model(
instance = instance,
formulation = formulation,
optimizer = Cbc.Optimizer,
variable_names = true,
)
set_silent(model)
UnitCommitment.optimize!(model)
solution = UnitCommitment.solution(model)
if dump
open("/tmp/ucjl.json", "w") do f
return write(f, JSON.json(solution, 2))
end
write_to_file(model, "/tmp/ucjl.lp")
end
@test UnitCommitment.validate(instance, solution)
end
return
end
@testset "formulations" begin
@testset "default" begin
_test(Formulation())
end
@testset "ArrCon2000" begin
_test(Formulation(ramping = ArrCon2000.Ramping()))
end
@testset "DamKucRajAta2016" begin
_test(Formulation(ramping = DamKucRajAta2016.Ramping()))
end
@testset "MorLatRam2013" begin
_test(
Formulation(
ramping = MorLatRam2013.Ramping(),
startup_costs = MorLatRam2013.StartupCosts(),
),
)
end
@testset "PanGua2016" begin
_test(Formulation(ramping = PanGua2016.Ramping()))
end
@testset "Gar1962" begin
_test(Formulation(pwl_costs = Gar1962.PwlCosts()))
end
@testset "CarArr2006" begin
_test(Formulation(pwl_costs = CarArr2006.PwlCosts()))
end
@testset "KnuOstWat2018" begin
_test(Formulation(pwl_costs = KnuOstWat2018.PwlCosts()))
end
@testset "WanHob2016" begin
_test(
Formulation(ramping = WanHob2016.Ramping()),
instances = ["case14-flex"],
)
end
end

View File

@@ -1,42 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Test
using UnitCommitment
push!(Base.LOAD_PATH, @__DIR__)
UnitCommitment._setup_logger(level = Base.CoreLogging.Error)
FIXTURES = "$(@__DIR__)/fixtures"
@testset "UnitCommitment" begin
include("usage.jl")
@testset "import" begin
include("import/egret_test.jl")
end
@testset "instance" begin
include("instance/read_test.jl")
include("instance/migrate_test.jl")
end
@testset "model" begin
include("model/formulations_test.jl")
end
@testset "solution" begin
@testset "XavQiuWanThi19" begin
include("solution/methods/XavQiuWanThi19/filter_test.jl")
include("solution/methods/XavQiuWanThi19/find_test.jl")
include("solution/methods/XavQiuWanThi19/sensitivity_test.jl")
end
end
@testset "transform" begin
include("transform/initcond_test.jl")
include("transform/slice_test.jl")
@testset "randomize" begin
include("transform/randomize/XavQiuAhm2021_test.jl")
end
end
@testset "validation" begin
include("validation/repair_test.jl")
end
end

View File

@@ -1,83 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Test, LinearAlgebra
import UnitCommitment: _Violation, _offer, _query
@testset "_ViolationFilter" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
filter = UnitCommitment._ViolationFilter(max_per_line = 1, max_total = 2)
_offer(
filter,
_Violation(
time = 1,
monitored_line = instance.lines[1],
outage_line = nothing,
amount = 100.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = instance.lines[1],
outage_line = instance.lines[1],
amount = 300.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = instance.lines[1],
outage_line = instance.lines[5],
amount = 500.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = instance.lines[1],
outage_line = instance.lines[4],
amount = 400.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = instance.lines[2],
outage_line = instance.lines[1],
amount = 200.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = instance.lines[2],
outage_line = instance.lines[8],
amount = 100.0,
),
)
actual = _query(filter)
expected = [
_Violation(
time = 1,
monitored_line = instance.lines[2],
outage_line = instance.lines[1],
amount = 200.0,
),
_Violation(
time = 1,
monitored_line = instance.lines[1],
outage_line = instance.lines[5],
amount = 500.0,
),
]
@test actual == expected
end

View File

@@ -1,35 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Test, LinearAlgebra
import UnitCommitment: _Violation, _offer, _query
@testset "find_violations" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
for line in instance.lines, t in 1:instance.time
line.normal_flow_limit[t] = 1.0
line.emergency_flow_limit[t] = 1.0
end
isf = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
)
lodf = UnitCommitment._line_outage_factors(
lines = instance.lines,
buses = instance.buses,
isf = isf,
)
inj = [1000.0 for b in 1:13, t in 1:instance.time]
overflow = [0.0 for l in instance.lines, t in 1:instance.time]
violations = UnitCommitment._find_violations(
instance = instance,
net_injections = inj,
overflow = overflow,
isf = isf,
lodf = lodf,
max_per_line = 1,
max_per_period = 5,
)
@test length(violations) == 20
end

View File

@@ -1,143 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Test, LinearAlgebra
@testset "_susceptance_matrix" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
actual = UnitCommitment._susceptance_matrix(instance.lines)
@test size(actual) == (20, 20)
expected = Diagonal([
29.5,
7.83,
8.82,
9.9,
10.04,
10.2,
41.45,
8.35,
3.14,
6.93,
8.77,
6.82,
13.4,
9.91,
15.87,
20.65,
6.46,
9.09,
8.73,
5.02,
])
@test round.(actual, digits = 2) == expected
end
@testset "_reduced_incidence_matrix" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
actual = UnitCommitment._reduced_incidence_matrix(
lines = instance.lines,
buses = instance.buses,
)
@test size(actual) == (20, 13)
@test actual[1, 1] == -1.0
@test actual[3, 1] == 1.0
@test actual[4, 1] == 1.0
@test actual[5, 1] == 1.0
@test actual[3, 2] == -1.0
@test actual[6, 2] == 1.0
@test actual[4, 3] == -1.0
@test actual[6, 3] == -1.0
@test actual[7, 3] == 1.0
@test actual[8, 3] == 1.0
@test actual[9, 3] == 1.0
@test actual[2, 4] == -1.0
@test actual[5, 4] == -1.0
@test actual[7, 4] == -1.0
@test actual[10, 4] == 1.0
@test actual[10, 5] == -1.0
@test actual[11, 5] == 1.0
@test actual[12, 5] == 1.0
@test actual[13, 5] == 1.0
@test actual[8, 6] == -1.0
@test actual[14, 6] == 1.0
@test actual[15, 6] == 1.0
@test actual[14, 7] == -1.0
@test actual[9, 8] == -1.0
@test actual[15, 8] == -1.0
@test actual[16, 8] == 1.0
@test actual[17, 8] == 1.0
@test actual[16, 9] == -1.0
@test actual[18, 9] == 1.0
@test actual[11, 10] == -1.0
@test actual[18, 10] == -1.0
@test actual[12, 11] == -1.0
@test actual[19, 11] == 1.0
@test actual[13, 12] == -1.0
@test actual[19, 12] == -1.0
@test actual[20, 12] == 1.0
@test actual[17, 13] == -1.0
@test actual[20, 13] == -1.0
end
@testset "_injection_shift_factors" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
actual = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
)
@test size(actual) == (20, 13)
@test round.(actual, digits = 2) == [
-0.84 -0.75 -0.67 -0.61 -0.63 -0.66 -0.66 -0.65 -0.65 -0.64 -0.63 -0.63 -0.64
-0.16 -0.25 -0.33 -0.39 -0.37 -0.34 -0.34 -0.35 -0.35 -0.36 -0.37 -0.37 -0.36
0.03 -0.53 -0.15 -0.1 -0.12 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.12 -0.13
0.06 -0.14 -0.32 -0.22 -0.25 -0.3 -0.3 -0.29 -0.28 -0.27 -0.25 -0.26 -0.27
0.08 -0.07 -0.2 -0.29 -0.26 -0.22 -0.22 -0.22 -0.23 -0.25 -0.26 -0.26 -0.24
0.03 0.47 -0.15 -0.1 -0.12 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.12 -0.13
0.08 0.31 0.5 -0.3 -0.03 0.36 0.36 0.28 0.23 0.1 -0.0 0.02 0.17
0.0 0.01 0.02 -0.01 -0.22 -0.63 -0.63 -0.45 -0.41 -0.32 -0.24 -0.25 -0.36
0.0 0.01 0.01 -0.01 -0.12 -0.17 -0.17 -0.26 -0.24 -0.18 -0.14 -0.14 -0.21
-0.0 -0.02 -0.03 0.02 -0.66 -0.2 -0.2 -0.29 -0.36 -0.5 -0.63 -0.61 -0.43
-0.0 -0.01 -0.02 0.01 0.21 -0.12 -0.12 -0.17 -0.28 -0.53 0.18 0.15 -0.03
-0.0 -0.0 -0.0 0.0 0.03 -0.02 -0.02 -0.03 -0.02 0.01 -0.52 -0.17 -0.09
-0.0 -0.01 -0.01 0.01 0.11 -0.06 -0.06 -0.09 -0.05 0.02 -0.28 -0.59 -0.31
-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0
0.0 0.01 0.02 -0.01 -0.22 0.37 0.37 -0.45 -0.41 -0.32 -0.24 -0.25 -0.36
0.0 0.01 0.02 -0.01 -0.21 0.12 0.12 0.17 -0.72 -0.47 -0.18 -0.15 0.03
0.0 0.01 0.01 -0.01 -0.14 0.08 0.08 0.12 0.07 -0.03 -0.2 -0.24 -0.6
0.0 0.01 0.02 -0.01 -0.21 0.12 0.12 0.17 0.28 -0.47 -0.18 -0.15 0.03
-0.0 -0.0 -0.0 0.0 0.03 -0.02 -0.02 -0.03 -0.02 0.01 0.48 -0.17 -0.09
-0.0 -0.01 -0.01 0.01 0.14 -0.08 -0.08 -0.12 -0.07 0.03 0.2 0.24 -0.4
]
end
@testset "_line_outage_factors" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
isf_before = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
)
lodf = UnitCommitment._line_outage_factors(
lines = instance.lines,
buses = instance.buses,
isf = isf_before,
)
for contingency in instance.contingencies
for lc in contingency.lines
prev_susceptance = lc.susceptance
lc.susceptance = 0.0
isf_after = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
)
lc.susceptance = prev_susceptance
for lm in instance.lines
expected = isf_after[lm.offset, :]
actual =
isf_before[lm.offset, :] +
lodf[lm.offset, lc.offset] * isf_before[lc.offset, :]
@test norm(expected - actual) < 1e-6
end
end
end
end

View File

@@ -0,0 +1,58 @@
module UnitCommitmentT
using JuliaFormatter
using UnitCommitment
using Test
include("usage.jl")
include("import/egret_test.jl")
include("instance/read_test.jl")
include("instance/migrate_test.jl")
include("model/formulations_test.jl")
include("solution/methods/XavQiuWanThi19/filter_test.jl")
include("solution/methods/XavQiuWanThi19/find_test.jl")
include("solution/methods/XavQiuWanThi19/sensitivity_test.jl")
include("transform/initcond_test.jl")
include("transform/slice_test.jl")
include("transform/randomize/XavQiuAhm2021_test.jl")
include("validation/repair_test.jl")
include("lmp/conventional_test.jl")
include("lmp/aelmp_test.jl")
basedir = dirname(@__FILE__)
function fixture(path::String)::String
return "$basedir/../fixtures/$path"
end
function runtests()
println("Running tests...")
UnitCommitment._setup_logger(level = Base.CoreLogging.Error)
@testset "UnitCommitment" begin
usage_test()
import_egret_test()
instance_read_test()
instance_migrate_test()
model_formulations_test()
solution_methods_XavQiuWanThi19_filter_test()
solution_methods_XavQiuWanThi19_find_test()
solution_methods_XavQiuWanThi19_sensitivity_test()
transform_initcond_test()
transform_slice_test()
transform_randomize_XavQiuAhm2021_test()
validation_repair_test()
lmp_conventional_test()
lmp_aelmp_test()
end
return
end
function format()
JuliaFormatter.format(basedir, verbose = true)
JuliaFormatter.format("$basedir/../../src", verbose = true)
return
end
export runtests, format
end # module UnitCommitmentT

View File

@@ -0,0 +1,23 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment
function import_egret_test()
@testset "read_egret_solution" begin
solution =
UnitCommitment.read_egret_solution(fixture("egret_output.json.gz"))
for attr in
["Is on", "Thermal production (MW)", "Thermal production cost (\$)"]
@test attr in keys(solution)
@test "115_STEAM_1" in keys(solution[attr])
@test length(solution[attr]["115_STEAM_1"]) == 48
end
@test solution["Thermal production cost (\$)"]["315_CT_6"][15:20] ==
[0.0, 0.0, 884.44, 1470.71, 1470.71, 884.44]
@test solution["Startup cost (\$)"]["315_CT_6"][15:20] ==
[0.0, 0.0, 5665.23, 0.0, 0.0, 0.0]
@test length(keys(solution["Is on"])) == 154
end
end

View File

@@ -0,0 +1,24 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
function instance_migrate_test()
@testset "read v0.2" begin
instance = UnitCommitment.read(fixture("/ucjl-0.2.json.gz"))
@test length(instance.scenarios) == 1
sc = instance.scenarios[1]
@test length(sc.reserves_by_name["r1"].amount) == 4
@test sc.thermal_units_by_name["g2"].reserves[1].name == "r1"
end
@testset "read v0.3" begin
instance = UnitCommitment.read(fixture("/ucjl-0.3.json.gz"))
@test length(instance.scenarios) == 1
sc = instance.scenarios[1]
@test length(sc.thermal_units) == 6
@test length(sc.buses) == 14
@test length(sc.lines) == 20
end
end

View File

@@ -0,0 +1,168 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
function instance_read_test()
@testset "read_benchmark" begin
instance = UnitCommitment.read(fixture("case14.json.gz"))
@test repr(instance) == (
"UnitCommitmentInstance(1 scenarios, 6 thermal units, 0 profiled units, 14 buses, " *
"20 lines, 19 contingencies, 1 price sensitive loads, 4 time steps)"
)
@test length(instance.scenarios) == 1
sc = instance.scenarios[1]
@test length(sc.lines) == 20
@test length(sc.buses) == 14
@test length(sc.thermal_units) == 6
@test length(sc.contingencies) == 19
@test length(sc.price_sensitive_loads) == 1
@test instance.time == 4
@test sc.lines[5].name == "l5"
@test sc.lines[5].source.name == "b2"
@test sc.lines[5].target.name == "b5"
@test sc.lines[5].reactance 0.17388
@test sc.lines[5].susceptance 10.037550333
@test sc.lines[5].normal_flow_limit == [1e8 for t in 1:4]
@test sc.lines[5].emergency_flow_limit == [1e8 for t in 1:4]
@test sc.lines[5].flow_limit_penalty == [5e3 for t in 1:4]
@test sc.lines_by_name["l5"].name == "l5"
@test sc.lines[1].name == "l1"
@test sc.lines[1].source.name == "b1"
@test sc.lines[1].target.name == "b2"
@test sc.lines[1].reactance 0.059170
@test sc.lines[1].susceptance 29.496860773945
@test sc.lines[1].normal_flow_limit == [300.0 for t in 1:4]
@test sc.lines[1].emergency_flow_limit == [400.0 for t in 1:4]
@test sc.lines[1].flow_limit_penalty == [1e3 for t in 1:4]
@test sc.buses[9].name == "b9"
@test sc.buses[9].load == [35.36638, 33.25495, 31.67138, 31.14353]
@test sc.buses_by_name["b9"].name == "b9"
@test sc.reserves[1].name == "r1"
@test sc.reserves[1].type == "spinning"
@test sc.reserves[1].amount == [100.0, 100.0, 100.0, 100.0]
@test sc.reserves_by_name["r1"].name == "r1"
unit = sc.thermal_units[1]
@test unit.name == "g1"
@test unit.bus.name == "b1"
@test unit.ramp_up_limit == 1e6
@test unit.ramp_down_limit == 1e6
@test unit.startup_limit == 1e6
@test unit.shutdown_limit == 1e6
@test unit.must_run == [false for t in 1:4]
@test unit.min_power_cost == [1400.0 for t in 1:4]
@test unit.min_uptime == 1
@test unit.min_downtime == 1
for t in 1:1
@test unit.cost_segments[1].mw[t] == 10.0
@test unit.cost_segments[2].mw[t] == 20.0
@test unit.cost_segments[3].mw[t] == 5.0
@test unit.cost_segments[1].cost[t] 20.0
@test unit.cost_segments[2].cost[t] 30.0
@test unit.cost_segments[3].cost[t] 40.0
end
@test length(unit.startup_categories) == 3
@test unit.startup_categories[1].delay == 1
@test unit.startup_categories[2].delay == 2
@test unit.startup_categories[3].delay == 3
@test unit.startup_categories[1].cost == 1000.0
@test unit.startup_categories[2].cost == 1500.0
@test unit.startup_categories[3].cost == 2000.0
@test length(unit.reserves) == 0
@test sc.thermal_units_by_name["g1"].name == "g1"
unit = sc.thermal_units[2]
@test unit.name == "g2"
@test unit.must_run == [false for t in 1:4]
@test length(unit.reserves) == 1
unit = sc.thermal_units[3]
@test unit.name == "g3"
@test unit.bus.name == "b3"
@test unit.ramp_up_limit == 70.0
@test unit.ramp_down_limit == 70.0
@test unit.startup_limit == 70.0
@test unit.shutdown_limit == 70.0
@test unit.must_run == [true for t in 1:4]
@test unit.min_power_cost == [0.0 for t in 1:4]
@test unit.min_uptime == 1
@test unit.min_downtime == 1
for t in 1:4
@test unit.cost_segments[1].mw[t] 33
@test unit.cost_segments[2].mw[t] 33
@test unit.cost_segments[3].mw[t] 34
@test unit.cost_segments[1].cost[t] 33.75
@test unit.cost_segments[2].cost[t] 38.04
@test unit.cost_segments[3].cost[t] 44.77853
end
@test length(unit.reserves) == 1
@test unit.reserves[1].name == "r1"
@test sc.contingencies[1].lines == [sc.lines[1]]
@test sc.contingencies[1].thermal_units == []
@test sc.contingencies[1].name == "c1"
@test sc.contingencies_by_name["c1"].name == "c1"
load = sc.price_sensitive_loads[1]
@test load.name == "ps1"
@test load.bus.name == "b3"
@test load.revenue == [100.0 for t in 1:4]
@test load.demand == [50.0 for t in 1:4]
@test sc.price_sensitive_loads_by_name["ps1"].name == "ps1"
end
@testset "read_benchmark sub-hourly" begin
instance = UnitCommitment.read(fixture("case14-sub-hourly.json.gz"))
@test instance.time == 4
unit = instance.scenarios[1].thermal_units[1]
@test unit.name == "g1"
@test unit.min_uptime == 2
@test unit.min_downtime == 2
@test length(unit.startup_categories) == 3
@test unit.startup_categories[1].delay == 2
@test unit.startup_categories[2].delay == 4
@test unit.startup_categories[3].delay == 6
@test unit.initial_status == -200
end
@testset "read_benchmark profiled-units" begin
instance = UnitCommitment.read(fixture("case14-profiled.json.gz"))
sc = instance.scenarios[1]
@test length(sc.profiled_units) == 2
first_pu = sc.profiled_units[1]
@test first_pu.name == "g7"
@test first_pu.bus.name == "b4"
@test first_pu.cost == [100.0 for t in 1:4]
@test first_pu.min_power == [60.0 for t in 1:4]
@test first_pu.max_power == [100.0 for t in 1:4]
@test sc.profiled_units_by_name["g7"].name == "g7"
second_pu = sc.profiled_units[2]
@test second_pu.name == "g8"
@test second_pu.bus.name == "b5"
@test second_pu.cost == [50.0 for t in 1:4]
@test second_pu.min_power == [0.0 for t in 1:4]
@test second_pu.max_power == [120.0 for t in 1:4]
@test sc.profiled_units_by_name["g8"].name == "g8"
end
@testset "read_benchmark commitmemt-status" begin
instance = UnitCommitment.read(fixture("case14-fixed-status.json.gz"))
sc = instance.scenarios[1]
@test sc.thermal_units[1].commitment_status == [nothing for t in 1:4]
@test sc.thermal_units[2].commitment_status == [true for t in 1:4]
@test sc.thermal_units[4].commitment_status == [false for t in 1:4]
@test sc.thermal_units[6].commitment_status ==
[false, nothing, true, nothing]
end
end

View File

@@ -0,0 +1,40 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, HiGHS, JuMP
import UnitCommitment: AELMP
function lmp_aelmp_test()
@testset "aelmp" begin
path = fixture("aelmp_simple.json.gz")
# model has to be solved first
instance = UnitCommitment.read(path)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
variable_names = true,
)
JuMP.set_silent(model)
UnitCommitment.optimize!(model)
# policy 1: allow offlines; consider startups
aelmp_1 = UnitCommitment.compute_lmp(
model,
AELMP(),
optimizer = HiGHS.Optimizer,
)
@test aelmp_1["s1", "B1", 1] 231.7 atol = 0.1
# policy 2: do not allow offlines; but consider startups
aelmp_2 = UnitCommitment.compute_lmp(
model,
AELMP(
allow_offline_participation = false,
consider_startup_costs = true,
),
optimizer = HiGHS.Optimizer,
)
@test aelmp_2["s1", "B1", 1] 274.3 atol = 0.1
end
end

View File

@@ -0,0 +1,53 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, HiGHS, JuMP
import UnitCommitment: ConventionalLMP
function solve_conventional_testcase(path::String)
instance = UnitCommitment.read(path)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
variable_names = true,
)
JuMP.set_silent(model)
UnitCommitment.optimize!(model)
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
return lmp
end
function lmp_conventional_test()
@testset "conventional" begin
# instance 1
path = fixture("lmp_simple_test_1.json.gz")
lmp = solve_conventional_testcase(path)
@test lmp["s1", "A", 1] == 50.0
@test lmp["s1", "B", 1] == 50.0
# instance 2
path = fixture("lmp_simple_test_2.json.gz")
lmp = solve_conventional_testcase(path)
@test lmp["s1", "A", 1] == 50.0
@test lmp["s1", "B", 1] == 60.0
# instance 3
path = fixture("lmp_simple_test_3.json.gz")
lmp = solve_conventional_testcase(path)
@test lmp["s1", "A", 1] == 50.0
@test lmp["s1", "B", 1] == 70.0
@test lmp["s1", "C", 1] == 100.0
# instance 4
path = fixture("lmp_simple_test_4.json.gz")
lmp = solve_conventional_testcase(path)
@test lmp["s1", "A", 1] == 50.0
@test lmp["s1", "B", 1] == 70.0
@test lmp["s1", "C", 1] == 90.0
end
end

View File

@@ -0,0 +1,86 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment
using JuMP
using Cbc
using JSON
import UnitCommitment:
ArrCon2000,
CarArr2006,
DamKucRajAta2016,
Formulation,
Gar1962,
KnuOstWat2018,
MorLatRam2013,
PanGua2016,
XavQiuWanThi2019,
WanHob2016
function _test(
formulation::Formulation;
instances = ["case14"],
dump::Bool = false,
)::Nothing
for instance_name in instances
instance = UnitCommitment.read(fixture("$(instance_name).json.gz"))
model = UnitCommitment.build_model(
instance = instance,
formulation = formulation,
optimizer = Cbc.Optimizer,
variable_names = true,
)
set_silent(model)
UnitCommitment.optimize!(model)
solution = UnitCommitment.solution(model)
if dump
open("/tmp/ucjl.json", "w") do f
return write(f, JSON.json(solution, 2))
end
write_to_file(model, "/tmp/ucjl.lp")
end
@test UnitCommitment.validate(instance, solution)
end
return
end
function model_formulations_test()
@testset "formulations" begin
@testset "default" begin
_test(Formulation())
end
@testset "ArrCon2000" begin
_test(Formulation(ramping = ArrCon2000.Ramping()))
end
@testset "DamKucRajAta2016" begin
_test(Formulation(ramping = DamKucRajAta2016.Ramping()))
end
@testset "MorLatRam2013" begin
_test(
Formulation(
ramping = MorLatRam2013.Ramping(),
startup_costs = MorLatRam2013.StartupCosts(),
),
)
end
@testset "PanGua2016" begin
_test(Formulation(ramping = PanGua2016.Ramping()))
end
@testset "Gar1962" begin
_test(Formulation(pwl_costs = Gar1962.PwlCosts()))
end
@testset "CarArr2006" begin
_test(Formulation(pwl_costs = CarArr2006.PwlCosts()))
end
@testset "KnuOstWat2018" begin
_test(Formulation(pwl_costs = KnuOstWat2018.PwlCosts()))
end
@testset "WanHob2016" begin
_test(
Formulation(ramping = WanHob2016.Ramping()),
instances = ["case14-flex"],
)
end
end
end

View File

@@ -0,0 +1,86 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Test, LinearAlgebra
import UnitCommitment: _Violation, _offer, _query
function solution_methods_XavQiuWanThi19_filter_test()
@testset "_ViolationFilter" begin
instance = UnitCommitment.read(fixture("case14.json.gz"))
sc = instance.scenarios[1]
filter =
UnitCommitment._ViolationFilter(max_per_line = 1, max_total = 2)
_offer(
filter,
_Violation(
time = 1,
monitored_line = sc.lines[1],
outage_line = nothing,
amount = 100.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = sc.lines[1],
outage_line = sc.lines[1],
amount = 300.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = sc.lines[1],
outage_line = sc.lines[5],
amount = 500.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = sc.lines[1],
outage_line = sc.lines[4],
amount = 400.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = sc.lines[2],
outage_line = sc.lines[1],
amount = 200.0,
),
)
_offer(
filter,
_Violation(
time = 1,
monitored_line = sc.lines[2],
outage_line = sc.lines[8],
amount = 100.0,
),
)
actual = _query(filter)
expected = [
_Violation(
time = 1,
monitored_line = sc.lines[2],
outage_line = sc.lines[1],
amount = 200.0,
),
_Violation(
time = 1,
monitored_line = sc.lines[1],
outage_line = sc.lines[5],
amount = 500.0,
),
]
@test actual == expected
end
end

View File

@@ -0,0 +1,39 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Test, LinearAlgebra
import UnitCommitment: _Violation, _offer, _query
function solution_methods_XavQiuWanThi19_find_test()
@testset "find_violations" begin
instance = UnitCommitment.read(fixture("case14.json.gz"))
sc = instance.scenarios[1]
for line in sc.lines, t in 1:instance.time
line.normal_flow_limit[t] = 1.0
line.emergency_flow_limit[t] = 1.0
end
isf = UnitCommitment._injection_shift_factors(
lines = sc.lines,
buses = sc.buses,
)
lodf = UnitCommitment._line_outage_factors(
lines = sc.lines,
buses = sc.buses,
isf = isf,
)
inj = [1000.0 for b in 1:13, t in 1:instance.time]
overflow = [0.0 for l in sc.lines, t in 1:instance.time]
violations = UnitCommitment._find_violations(
instance = instance,
sc = sc,
net_injections = inj,
overflow = overflow,
isf = isf,
lodf = lodf,
max_per_line = 1,
max_per_period = 5,
)
@test length(violations) == 20
end
end

View File

@@ -0,0 +1,149 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Test, LinearAlgebra
function solution_methods_XavQiuWanThi19_sensitivity_test()
@testset "_susceptance_matrix" begin
instance = UnitCommitment.read(fixture("/case14.json.gz"))
sc = instance.scenarios[1]
actual = UnitCommitment._susceptance_matrix(sc.lines)
@test size(actual) == (20, 20)
expected = Diagonal([
29.5,
7.83,
8.82,
9.9,
10.04,
10.2,
41.45,
8.35,
3.14,
6.93,
8.77,
6.82,
13.4,
9.91,
15.87,
20.65,
6.46,
9.09,
8.73,
5.02,
])
@test round.(actual, digits = 2) == expected
end
@testset "_reduced_incidence_matrix" begin
instance = UnitCommitment.read(fixture("/case14.json.gz"))
sc = instance.scenarios[1]
actual = UnitCommitment._reduced_incidence_matrix(
lines = sc.lines,
buses = sc.buses,
)
@test size(actual) == (20, 13)
@test actual[1, 1] == -1.0
@test actual[3, 1] == 1.0
@test actual[4, 1] == 1.0
@test actual[5, 1] == 1.0
@test actual[3, 2] == -1.0
@test actual[6, 2] == 1.0
@test actual[4, 3] == -1.0
@test actual[6, 3] == -1.0
@test actual[7, 3] == 1.0
@test actual[8, 3] == 1.0
@test actual[9, 3] == 1.0
@test actual[2, 4] == -1.0
@test actual[5, 4] == -1.0
@test actual[7, 4] == -1.0
@test actual[10, 4] == 1.0
@test actual[10, 5] == -1.0
@test actual[11, 5] == 1.0
@test actual[12, 5] == 1.0
@test actual[13, 5] == 1.0
@test actual[8, 6] == -1.0
@test actual[14, 6] == 1.0
@test actual[15, 6] == 1.0
@test actual[14, 7] == -1.0
@test actual[9, 8] == -1.0
@test actual[15, 8] == -1.0
@test actual[16, 8] == 1.0
@test actual[17, 8] == 1.0
@test actual[16, 9] == -1.0
@test actual[18, 9] == 1.0
@test actual[11, 10] == -1.0
@test actual[18, 10] == -1.0
@test actual[12, 11] == -1.0
@test actual[19, 11] == 1.0
@test actual[13, 12] == -1.0
@test actual[19, 12] == -1.0
@test actual[20, 12] == 1.0
@test actual[17, 13] == -1.0
@test actual[20, 13] == -1.0
end
@testset "_injection_shift_factors" begin
instance = UnitCommitment.read(fixture("/case14.json.gz"))
sc = instance.scenarios[1]
actual = UnitCommitment._injection_shift_factors(
lines = sc.lines,
buses = sc.buses,
)
@test size(actual) == (20, 13)
@test round.(actual, digits = 2) == [
-0.84 -0.75 -0.67 -0.61 -0.63 -0.66 -0.66 -0.65 -0.65 -0.64 -0.63 -0.63 -0.64
-0.16 -0.25 -0.33 -0.39 -0.37 -0.34 -0.34 -0.35 -0.35 -0.36 -0.37 -0.37 -0.36
0.03 -0.53 -0.15 -0.1 -0.12 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.12 -0.13
0.06 -0.14 -0.32 -0.22 -0.25 -0.3 -0.3 -0.29 -0.28 -0.27 -0.25 -0.26 -0.27
0.08 -0.07 -0.2 -0.29 -0.26 -0.22 -0.22 -0.22 -0.23 -0.25 -0.26 -0.26 -0.24
0.03 0.47 -0.15 -0.1 -0.12 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.12 -0.13
0.08 0.31 0.5 -0.3 -0.03 0.36 0.36 0.28 0.23 0.1 -0.0 0.02 0.17
0.0 0.01 0.02 -0.01 -0.22 -0.63 -0.63 -0.45 -0.41 -0.32 -0.24 -0.25 -0.36
0.0 0.01 0.01 -0.01 -0.12 -0.17 -0.17 -0.26 -0.24 -0.18 -0.14 -0.14 -0.21
-0.0 -0.02 -0.03 0.02 -0.66 -0.2 -0.2 -0.29 -0.36 -0.5 -0.63 -0.61 -0.43
-0.0 -0.01 -0.02 0.01 0.21 -0.12 -0.12 -0.17 -0.28 -0.53 0.18 0.15 -0.03
-0.0 -0.0 -0.0 0.0 0.03 -0.02 -0.02 -0.03 -0.02 0.01 -0.52 -0.17 -0.09
-0.0 -0.01 -0.01 0.01 0.11 -0.06 -0.06 -0.09 -0.05 0.02 -0.28 -0.59 -0.31
-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -1.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0
0.0 0.01 0.02 -0.01 -0.22 0.37 0.37 -0.45 -0.41 -0.32 -0.24 -0.25 -0.36
0.0 0.01 0.02 -0.01 -0.21 0.12 0.12 0.17 -0.72 -0.47 -0.18 -0.15 0.03
0.0 0.01 0.01 -0.01 -0.14 0.08 0.08 0.12 0.07 -0.03 -0.2 -0.24 -0.6
0.0 0.01 0.02 -0.01 -0.21 0.12 0.12 0.17 0.28 -0.47 -0.18 -0.15 0.03
-0.0 -0.0 -0.0 0.0 0.03 -0.02 -0.02 -0.03 -0.02 0.01 0.48 -0.17 -0.09
-0.0 -0.01 -0.01 0.01 0.14 -0.08 -0.08 -0.12 -0.07 0.03 0.2 0.24 -0.4
]
end
@testset "_line_outage_factors" begin
instance = UnitCommitment.read(fixture("/case14.json.gz"))
sc = instance.scenarios[1]
isf_before = UnitCommitment._injection_shift_factors(
lines = sc.lines,
buses = sc.buses,
)
lodf = UnitCommitment._line_outage_factors(
lines = sc.lines,
buses = sc.buses,
isf = isf_before,
)
for contingency in sc.contingencies
for lc in contingency.lines
prev_susceptance = lc.susceptance
lc.susceptance = 0.0
isf_after = UnitCommitment._injection_shift_factors(
lines = sc.lines,
buses = sc.buses,
)
lc.susceptance = prev_susceptance
for lm in sc.lines
expected = isf_after[lm.offset, :]
actual =
isf_before[lm.offset, :] +
lodf[lm.offset, lc.offset] * isf_before[lc.offset, :]
@test norm(expected - actual) < 1e-6
end
end
end
end
end

View File

@@ -0,0 +1,30 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, JuMP
function transform_initcond_test()
@testset "generate_initial_conditions!" begin
# Load instance
instance = UnitCommitment.read(fixture("case118-initcond.json.gz"))
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
sc = instance.scenarios[1]
# All units should have unknown initial conditions
for g in sc.thermal_units
@test g.initial_power === nothing
@test g.initial_status === nothing
end
# Generate initial conditions
UnitCommitment.generate_initial_conditions!(sc, optimizer)
# All units should now have known initial conditions
for g in sc.thermal_units
@test g.initial_power !== nothing
@test g.initial_status !== nothing
end
# TODO: Check that initial conditions are feasible
end
end

View File

@@ -0,0 +1,106 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import Random
import UnitCommitment: XavQiuAhm2021
using Distributions
using Random
using UnitCommitment, Cbc, JuMP
function get_scenario()
return UnitCommitment.read_benchmark(
"matpower/case118/2017-02-01",
).scenarios[1]
end
system_load(sc) = sum(b.load for b in sc.buses)
test_approx(x, y) = @test isapprox(x, y, atol = 1e-3)
function transform_randomize_XavQiuAhm2021_test()
@testset "XavQiuAhm2021" begin
@testset "cost and load share" begin
sc = get_scenario()
# Check original costs
unit = sc.thermal_units[10]
test_approx(unit.min_power_cost[1], 825.023)
test_approx(unit.cost_segments[1].cost[1], 36.659)
test_approx(unit.startup_categories[1].cost[1], 7570.42)
# Check original load share
bus = sc.buses[1]
prev_system_load = system_load(sc)
test_approx(bus.load[1] / prev_system_load[1], 0.012)
randomize!(
sc,
XavQiuAhm2021.Randomization(randomize_load_profile = false),
rng = MersenneTwister(42),
)
# Check randomized costs
test_approx(unit.min_power_cost[1], 831.977)
test_approx(unit.cost_segments[1].cost[1], 36.968)
test_approx(unit.startup_categories[1].cost[1], 7634.226)
# Check randomized load share
curr_system_load = system_load(sc)
test_approx(bus.load[1] / curr_system_load[1], 0.013)
# System load should not change
@test prev_system_load curr_system_load
end
@testset "load profile" begin
sc = get_scenario()
# Check original load profile
@test round.(system_load(sc), digits = 1)[1:8] [
3059.5,
2983.2,
2937.5,
2953.9,
3073.1,
3356.4,
4068.5,
4018.8,
]
randomize!(
sc,
XavQiuAhm2021.Randomization();
rng = MersenneTwister(42),
)
# Check randomized load profile
@test round.(system_load(sc), digits = 1)[1:8] [
4854.7,
4849.2,
4732.7,
4848.2,
4948.4,
5231.1,
5874.8,
5934.8,
]
end
@testset "profiled unit cost" begin
sc = UnitCommitment.read(
fixture("case14-profiled.json.gz"),
).scenarios[1]
# Check original costs
pu1 = sc.profiled_units[1]
pu2 = sc.profiled_units[2]
test_approx(pu1.cost[1], 100.0)
test_approx(pu2.cost[1], 50.0)
randomize!(
sc,
XavQiuAhm2021.Randomization(randomize_load_profile = false),
rng = MersenneTwister(42),
)
# Check randomized costs
test_approx(pu1.cost[1], 98.039)
test_approx(pu2.cost[1], 48.385)
end
end
end

View File

@@ -0,0 +1,68 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
function transform_slice_test()
@testset "slice" begin
instance = UnitCommitment.read(fixture("case14.json.gz"))
modified = UnitCommitment.slice(instance, 1:2)
sc = modified.scenarios[1]
# Should update all time-dependent fields
@test modified.time == 2
@test length(sc.power_balance_penalty) == 2
@test length(sc.reserves_by_name["r1"].amount) == 2
for u in sc.thermal_units
@test length(u.max_power) == 2
@test length(u.min_power) == 2
@test length(u.must_run) == 2
@test length(u.min_power_cost) == 2
for s in u.cost_segments
@test length(s.mw) == 2
@test length(s.cost) == 2
end
end
for b in sc.buses
@test length(b.load) == 2
end
for l in sc.lines
@test length(l.normal_flow_limit) == 2
@test length(l.emergency_flow_limit) == 2
@test length(l.flow_limit_penalty) == 2
end
for ps in sc.price_sensitive_loads
@test length(ps.demand) == 2
@test length(ps.revenue) == 2
end
# Should be able to build model without errors
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
model = UnitCommitment.build_model(
instance = modified,
optimizer = optimizer,
variable_names = true,
)
end
@testset "slice profiled units" begin
instance = UnitCommitment.read(fixture("case14-profiled.json.gz"))
modified = UnitCommitment.slice(instance, 1:2)
sc = modified.scenarios[1]
# Should update all time-dependent fields
for pu in sc.profiled_units
@test length(pu.max_power) == 2
@test length(pu.min_power) == 2
end
# Should be able to build model without errors
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
model = UnitCommitment.build_model(
instance = modified,
optimizer = optimizer,
variable_names = true,
)
end
end

66
test/src/usage.jl Normal file
View File

@@ -0,0 +1,66 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON
function _set_flow_limits!(instance)
for sc in instance.scenarios
sc.power_balance_penalty = [100_000 for _ in 1:instance.time]
for line in sc.lines, t in 1:4
line.normal_flow_limit[t] = 10.0
end
end
end
function usage_test()
@testset "usage" begin
@testset "deterministic" begin
instance = UnitCommitment.read(fixture("case14.json.gz"))
_set_flow_limits!(instance)
optimizer =
optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
model = UnitCommitment.build_model(
instance = instance,
optimizer = optimizer,
variable_names = true,
)
@test name(model[:is_on]["g1", 1]) == "is_on[g1,1]"
# Optimize and retrieve solution
UnitCommitment.optimize!(model)
solution = UnitCommitment.solution(model)
# Write solution to a file
filename = tempname()
UnitCommitment.write(filename, solution)
loaded = JSON.parsefile(filename)
@test length(loaded["Is on"]) == 6
# Verify solution
@test UnitCommitment.validate(instance, solution)
# Reoptimize with fixed solution
UnitCommitment.fix!(model, solution)
UnitCommitment.optimize!(model)
@test UnitCommitment.validate(instance, solution)
end
@testset "stochastic" begin
instance = UnitCommitment.read([
fixture("case14.json.gz"),
fixture("case14.json.gz"),
])
_set_flow_limits!(instance)
@test length(instance.scenarios) == 2
optimizer =
optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
model = UnitCommitment.build_model(
instance = instance,
optimizer = optimizer,
)
UnitCommitment.optimize!(model)
solution = UnitCommitment.solution(model)
end
end
end

View File

@@ -0,0 +1,43 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, JSON, GZip, DataStructures
function parse_case14()
return JSON.parse(
GZip.gzopen(fixture("case14.json.gz")),
dicttype = () -> DefaultOrderedDict(nothing),
)
end
function validation_repair_test()
@testset "repair!" begin
@testset "Cost curve should be convex" begin
json = parse_case14()
json["Generators"]["g1"]["Production cost curve (MW)"] =
[100, 150, 200]
json["Generators"]["g1"]["Production cost curve (\$)"] =
[10, 25, 30]
sc = UnitCommitment._from_json(json, repair = false)
@test UnitCommitment.repair!(sc) == 4
end
@testset "Startup limit must be greater than Pmin" begin
json = parse_case14()
json["Generators"]["g1"]["Production cost curve (MW)"] = [100, 150]
json["Generators"]["g1"]["Production cost curve (\$)"] = [100, 150]
json["Generators"]["g1"]["Startup limit (MW)"] = 80
sc = UnitCommitment._from_json(json, repair = false)
@test UnitCommitment.repair!(sc) == 1
end
@testset "Startup costs and delays must be increasing" begin
json = parse_case14()
json["Generators"]["g1"]["Startup costs (\$)"] = [300, 200, 100]
json["Generators"]["g1"]["Startup delays (h)"] = [8, 4, 2]
sc = UnitCommitment._from_json(json, repair = false)
@test UnitCommitment.repair!(sc) == 4
end
end
end

View File

@@ -1,28 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, JuMP
@testset "generate_initial_conditions!" begin
# Load instance
instance = UnitCommitment.read("$FIXTURES/case118-initcond.json.gz")
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
# All units should have unknown initial conditions
for g in instance.units
@test g.initial_power === nothing
@test g.initial_status === nothing
end
# Generate initial conditions
UnitCommitment.generate_initial_conditions!(instance, optimizer)
# All units should now have known initial conditions
for g in instance.units
@test g.initial_power !== nothing
@test g.initial_status !== nothing
end
# TODO: Check that initial conditions are feasible
end

View File

@@ -1,69 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import Random
import UnitCommitment: XavQiuAhm2021
using Distributions
using Random
using UnitCommitment, Cbc, JuMP
get_instance() = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
system_load(instance) = sum(b.load for b in instance.buses)
test_approx(x, y) = @test isapprox(x, y, atol = 1e-3)
@testset "XavQiuAhm2021" begin
@testset "cost and load share" begin
instance = get_instance()
# Check original costs
unit = instance.units[10]
test_approx(unit.min_power_cost[1], 825.023)
test_approx(unit.cost_segments[1].cost[1], 36.659)
test_approx(unit.startup_categories[1].cost[1], 7570.42)
# Check original load share
bus = instance.buses[1]
prev_system_load = system_load(instance)
test_approx(bus.load[1] / prev_system_load[1], 0.012)
randomize!(
instance,
method = XavQiuAhm2021.Randomization(
randomize_load_profile = false,
),
rng = MersenneTwister(42),
)
# Check randomized costs
test_approx(unit.min_power_cost[1], 831.977)
test_approx(unit.cost_segments[1].cost[1], 36.968)
test_approx(unit.startup_categories[1].cost[1], 7634.226)
# Check randomized load share
curr_system_load = system_load(instance)
test_approx(bus.load[1] / curr_system_load[1], 0.013)
# System load should not change
@test prev_system_load curr_system_load
end
@testset "load profile" begin
instance = get_instance()
# Check original load profile
@test round.(system_load(instance), digits = 1)[1:8]
[3059.5, 2983.2, 2937.5, 2953.9, 3073.1, 3356.4, 4068.5, 4018.8]
randomize!(
instance,
XavQiuAhm2021.Randomization(),
rng = MersenneTwister(42),
)
# Check randomized load profile
@test round.(system_load(instance), digits = 1)[1:8]
[4854.7, 4849.2, 4732.7, 4848.2, 4948.4, 5231.1, 5874.8, 5934.8]
end
end

View File

@@ -1,44 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@testset "slice" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
modified = UnitCommitment.slice(instance, 1:2)
# Should update all time-dependent fields
@test modified.time == 2
@test length(modified.power_balance_penalty) == 2
@test length(modified.reserves_by_name["r1"].amount) == 2
for u in modified.units
@test length(u.max_power) == 2
@test length(u.min_power) == 2
@test length(u.must_run) == 2
@test length(u.min_power_cost) == 2
for s in u.cost_segments
@test length(s.mw) == 2
@test length(s.cost) == 2
end
end
for b in modified.buses
@test length(b.load) == 2
end
for l in modified.lines
@test length(l.normal_flow_limit) == 2
@test length(l.emergency_flow_limit) == 2
@test length(l.flow_limit_penalty) == 2
end
for ps in modified.price_sensitive_loads
@test length(ps.demand) == 2
@test length(ps.revenue) == 2
end
# Should be able to build model without errors
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
model = UnitCommitment.build_model(
instance = modified,
optimizer = optimizer,
variable_names = true,
)
end

View File

@@ -1,37 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON
@testset "usage" begin
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
for line in instance.lines, t in 1:4
line.normal_flow_limit[t] = 10.0
end
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
model = UnitCommitment.build_model(
instance = instance,
optimizer = optimizer,
variable_names = true,
)
@test name(model[:is_on]["g1", 1]) == "is_on[g1,1]"
# Optimize and retrieve solution
UnitCommitment.optimize!(model)
solution = UnitCommitment.solution(model)
# Write solution to a file
filename = tempname()
UnitCommitment.write(filename, solution)
loaded = JSON.parsefile(filename)
@test length(loaded["Is on"]) == 6
# Verify solution
@test UnitCommitment.validate(instance, solution)
# Reoptimize with fixed solution
UnitCommitment.fix!(model, solution)
UnitCommitment.optimize!(model)
@test UnitCommitment.validate(instance, solution)
end

View File

@@ -1,39 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, JSON, GZip, DataStructures
function parse_case14()
return JSON.parse(
GZip.gzopen("$FIXTURES/case14.json.gz"),
dicttype = () -> DefaultOrderedDict(nothing),
)
end
@testset "repair!" begin
@testset "Cost curve should be convex" begin
json = parse_case14()
json["Generators"]["g1"]["Production cost curve (MW)"] = [100, 150, 200]
json["Generators"]["g1"]["Production cost curve (\$)"] = [10, 25, 30]
instance = UnitCommitment._from_json(json, repair = false)
@test UnitCommitment.repair!(instance) == 4
end
@testset "Startup limit must be greater than Pmin" begin
json = parse_case14()
json["Generators"]["g1"]["Production cost curve (MW)"] = [100, 150]
json["Generators"]["g1"]["Production cost curve (\$)"] = [100, 150]
json["Generators"]["g1"]["Startup limit (MW)"] = 80
instance = UnitCommitment._from_json(json, repair = false)
@test UnitCommitment.repair!(instance) == 1
end
@testset "Startup costs and delays must be increasing" begin
json = parse_case14()
json["Generators"]["g1"]["Startup costs (\$)"] = [300, 200, 100]
json["Generators"]["g1"]["Startup delays (h)"] = [8, 4, 2]
instance = UnitCommitment._from_json(json, repair = false)
@test UnitCommitment.repair!(instance) == 4
end
end