# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. function _add_production_piecewise_linear_eqs!( model::JuMP.Model, g::Unit, formulation::Gar62, )::Nothing eq_prod_above_def = _init(model, :eq_prod_above_def) eq_segprod_limit = _init(model, :eq_segprod_limit) is_on = model[:is_on] prod_above = model[:prod_above] segprod = model[:segprod] gn = g.name K = length(g.cost_segments) for t in 1:model[:instance].time # Definition of production # Equation (43) in Kneuven et al. (2020) eq_prod_above_def[gn, t] = @constraint( model, prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K) ) for k in 1:K # Equation (42) in Kneuven et al. (2020) # Without this, solvers will add a lot of implied bound cuts to # have this same effect. # NB: when reading instance, UnitCommitment.jl already calculates # difference between max power for segments k and k-1 so the # value of cost_segments[k].mw[t] is the max production *for # that segment* eq_segprod_limit[gn, t, k] = @constraint( model, segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t] ) # Also add this as an explicit upper bound on segprod to make the # solver's work a bit easier set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t]) # Objective function # Equation (44) in Kneuven et al. (2020) add_to_expression!( model[:obj], segprod[gn, t, k], g.cost_segments[k].cost[t], ) end end return end