mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 00:08:52 -06:00
123 lines
4.6 KiB
Julia
123 lines
4.6 KiB
Julia
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||
# Released under the modified BSD license. See COPYING.md for more details.
|
||
|
||
function _add_ramp_eqs!(
|
||
model::JuMP.Model,
|
||
g::ThermalUnit,
|
||
formulation_prod_vars::Gar1962.ProdVars,
|
||
formulation_ramping::DamKucRajAta2016.Ramping,
|
||
formulation_status_vars::Gar1962.StatusVars,
|
||
sc::UnitCommitmentScenario,
|
||
)::Nothing
|
||
# TODO: Move upper case constants to model[:instance]
|
||
RESERVES_WHEN_START_UP = true
|
||
RESERVES_WHEN_RAMP_UP = true
|
||
RESERVES_WHEN_RAMP_DOWN = true
|
||
RESERVES_WHEN_SHUT_DOWN = true
|
||
known_initial_conditions = true
|
||
is_initially_on = (g.initial_status > 0)
|
||
SU = g.startup_limit
|
||
SD = g.shutdown_limit
|
||
RU = g.ramp_up_limit
|
||
RD = g.ramp_down_limit
|
||
gn = g.name
|
||
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
|
||
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
|
||
reserve = _total_reserves(model, g, sc)
|
||
|
||
# Gar1962.ProdVars
|
||
prod_above = model[:prod_above]
|
||
|
||
# Gar1962.StatusVars
|
||
is_on = model[:is_on]
|
||
switch_off = model[:switch_off]
|
||
switch_on = model[:switch_on]
|
||
|
||
for t in 1:model[:instance].time
|
||
time_invariant =
|
||
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||
|
||
# if t > 1 && !time_invariant
|
||
# @warn(
|
||
# "Ramping according to Damcı-Kurt et al. (2016) requires " *
|
||
# "time-invariant minimum power. This does not hold for " *
|
||
# "generator $(gn): min_power[$t] = $(g.min_power[t]); " *
|
||
# "min_power[$(t-1)] = $(g.min_power[t-1]). Reverting to " *
|
||
# "Arroyo and Conejo (2000) formulation for this generator.",
|
||
# )
|
||
# end
|
||
|
||
max_prod_this_period =
|
||
prod_above[sc.name, gn, t] +
|
||
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
|
||
min_prod_last_period = 0.0
|
||
if t > 1 && time_invariant
|
||
min_prod_last_period = prod_above[sc.name, gn, t-1]
|
||
|
||
# Equation (35) in Kneuven et al. (2020)
|
||
# Sparser version of (24)
|
||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||
model,
|
||
max_prod_this_period - min_prod_last_period <=
|
||
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
|
||
RU * is_on[gn, t]
|
||
)
|
||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||
if t > 1
|
||
min_prod_last_period =
|
||
prod_above[sc.name, gn, t-1] +
|
||
g.min_power[t-1] * is_on[gn, t-1]
|
||
else
|
||
min_prod_last_period = max(g.initial_power, 0.0)
|
||
end
|
||
|
||
# Add the min prod at time t back in to max_prod_this_period to get _total_ production
|
||
# (instead of using the amount above minimum, as min prod for t < 1 is unknown)
|
||
max_prod_this_period += g.min_power[t] * is_on[gn, t]
|
||
|
||
# Modified version of equation (35) in Kneuven et al. (2020)
|
||
# Equivalent to (24)
|
||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||
model,
|
||
max_prod_this_period - min_prod_last_period <=
|
||
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
|
||
)
|
||
end
|
||
|
||
max_prod_last_period =
|
||
min_prod_last_period + (
|
||
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
|
||
reserve[t-1] : 0.0
|
||
)
|
||
min_prod_this_period = prod_above[sc.name, gn, t]
|
||
on_last_period = 0.0
|
||
if t > 1
|
||
on_last_period = is_on[gn, t-1]
|
||
elseif (known_initial_conditions && g.initial_status > 0)
|
||
on_last_period = 1.0
|
||
end
|
||
|
||
if t > 1 && time_invariant
|
||
# Equation (36) in Kneuven et al. (2020)
|
||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||
model,
|
||
max_prod_last_period - min_prod_this_period <=
|
||
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
|
||
RD * on_last_period
|
||
)
|
||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||
# Add back in min power
|
||
min_prod_this_period += g.min_power[t] * is_on[gn, t]
|
||
|
||
# Modified version of equation (36) in Kneuven et al. (2020)
|
||
# Equivalent to (25)
|
||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||
model,
|
||
max_prod_last_period - min_prod_this_period <=
|
||
(SD - RD) * switch_off[gn, t] + RD * on_last_period
|
||
)
|
||
end
|
||
end
|
||
end
|