You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
UnitCommitment.jl/src/model/formulations/DamKucRajAta2016/ramp.jl

123 lines
4.6 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::DamKucRajAta2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
RESERVES_WHEN_RAMP_UP = true
RESERVES_WHEN_RAMP_DOWN = true
RESERVES_WHEN_SHUT_DOWN = true
known_initial_conditions = true
is_initially_on = (g.initial_status > 0)
SU = g.startup_limit
SD = g.shutdown_limit
RU = g.ramp_up_limit
RD = g.ramp_down_limit
gn = g.name
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:model[:instance].time
time_invariant =
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
# if t > 1 && !time_invariant
# @warn(
# "Ramping according to Damcı-Kurt et al. (2016) requires " *
# "time-invariant minimum power. This does not hold for " *
# "generator $(gn): min_power[$t] = $(g.min_power[t]); " *
# "min_power[$(t-1)] = $(g.min_power[t-1]). Reverting to " *
# "Arroyo and Conejo (2000) formulation for this generator.",
# )
# end
max_prod_this_period =
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
min_prod_last_period = 0.0
if t > 1 && time_invariant
min_prod_last_period = prod_above[sc.name, gn, t-1]
# Equation (35) in Kneuven et al. (2020)
# Sparser version of (24)
eq_str_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
RU * is_on[gn, t]
)
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
if t > 1
min_prod_last_period =
prod_above[sc.name, gn, t-1] +
g.min_power[t-1] * is_on[gn, t-1]
else
min_prod_last_period = max(g.initial_power, 0.0)
end
# Add the min prod at time t back in to max_prod_this_period to get _total_ production
# (instead of using the amount above minimum, as min prod for t < 1 is unknown)
max_prod_this_period += g.min_power[t] * is_on[gn, t]
# Modified version of equation (35) in Kneuven et al. (2020)
# Equivalent to (24)
eq_str_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
)
end
max_prod_last_period =
min_prod_last_period + (
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
reserve[t-1] : 0.0
)
min_prod_this_period = prod_above[sc.name, gn, t]
on_last_period = 0.0
if t > 1
on_last_period = is_on[gn, t-1]
elseif (known_initial_conditions && g.initial_status > 0)
on_last_period = 1.0
end
if t > 1 && time_invariant
# Equation (36) in Kneuven et al. (2020)
eq_str_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
RD * on_last_period
)
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
# Add back in min power
min_prod_this_period += g.min_power[t] * is_on[gn, t]
# Modified version of equation (36) in Kneuven et al. (2020)
# Equivalent to (25)
eq_str_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - RD) * switch_off[gn, t] + RD * on_last_period
)
end
end
end