You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
7.0 KiB
212 lines
7.0 KiB
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
using JuMP
|
|
|
|
"""
|
|
function compute_lmp(
|
|
model::JuMP.Model,
|
|
method::AELMP;
|
|
optimizer,
|
|
)::OrderedDict{Tuple{String,Int},Float64}
|
|
|
|
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
|
|
|
|
The AELPM does the following three things:
|
|
|
|
1. It sets the minimum power output of each generator to zero
|
|
2. It averages the start-up cost over the offer blocks for each generator
|
|
3. It relaxes all integrality constraints
|
|
|
|
Returns a dictionary mapping `(bus_name, time)` to the marginal price.
|
|
|
|
WARNING: This approximation method is not fully developed. The implementation is based on MISO Phase I only.
|
|
|
|
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
|
|
2. The method does NOT support time-varying start-up costs.
|
|
3. An asset is considered offline if it is never on throughout all time periods.
|
|
4. The method does NOT support multiple scenarios.
|
|
|
|
Arguments
|
|
---------
|
|
|
|
- `model`:
|
|
the UnitCommitment model, must be solved before calling this function if offline participation is not allowed.
|
|
|
|
- `method`:
|
|
the AELMP method.
|
|
|
|
- `optimizer`:
|
|
the optimizer for solving the LP problem.
|
|
|
|
Examples
|
|
--------
|
|
|
|
```julia
|
|
using UnitCommitment
|
|
using HiGHS
|
|
|
|
import UnitCommitment: AELMP
|
|
|
|
# Read benchmark instance
|
|
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
|
|
|
|
# Build the model
|
|
model = UnitCommitment.build_model(
|
|
instance = instance,
|
|
optimizer = HiGHS.Optimizer,
|
|
)
|
|
|
|
# Optimize the model
|
|
UnitCommitment.optimize!(model)
|
|
|
|
# Compute the AELMPs
|
|
aelmp = UnitCommitment.compute_lmp(
|
|
model,
|
|
AELMP(
|
|
allow_offline_participation = false,
|
|
consider_startup_costs = true
|
|
),
|
|
optimizer = HiGHS.Optimizer
|
|
)
|
|
|
|
# Access the AELMPs
|
|
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
|
|
# Note: although scenario is supported, the query still keeps the scenario keys for consistency.
|
|
@show aelmp["s1", "b1", 1]
|
|
```
|
|
"""
|
|
function compute_lmp(
|
|
model::JuMP.Model,
|
|
method::AELMP;
|
|
optimizer,
|
|
)::OrderedDict{Tuple{String,String,Int},Float64}
|
|
@info "Building the approximation model..."
|
|
instance = deepcopy(model[:instance])
|
|
_aelmp_check_parameters(instance, model, method)
|
|
_modify_scenario!(instance.scenarios[1], model, method)
|
|
|
|
# prepare the result dictionary and solve the model
|
|
elmp = OrderedDict()
|
|
@info "Solving the approximation model."
|
|
approx_model = build_model(instance = instance, variable_names = true)
|
|
|
|
# relax the binary constraint, and relax integrality
|
|
for v in all_variables(approx_model)
|
|
if is_binary(v)
|
|
unset_binary(v)
|
|
end
|
|
end
|
|
relax_integrality(approx_model)
|
|
set_optimizer(approx_model, optimizer)
|
|
|
|
# solve the model
|
|
set_silent(approx_model)
|
|
optimize!(approx_model)
|
|
|
|
# access the dual values
|
|
@info "Getting dual values (AELMPs)."
|
|
for (key, val) in approx_model[:eq_net_injection]
|
|
elmp[key] = dual(val)
|
|
end
|
|
return elmp
|
|
end
|
|
|
|
function _aelmp_check_parameters(
|
|
instance::UnitCommitmentInstance,
|
|
model::JuMP.Model,
|
|
method::AELMP,
|
|
)
|
|
# CHECK: model cannot have multiple scenarios
|
|
if length(instance.scenarios) > 1
|
|
error("The method does NOT support multiple scenarios.")
|
|
end
|
|
sc = instance.scenarios[1]
|
|
# CHECK: model must be solved if allow_offline_participation=false
|
|
if !method.allow_offline_participation
|
|
if isnothing(model) || !has_values(model)
|
|
error(
|
|
"A solved UC model is required if allow_offline_participation=false.",
|
|
)
|
|
end
|
|
end
|
|
all_units = sc.units
|
|
# CHECK: model cannot handle non-fast-starts (MISO Phase I: can ONLY solve fast-starts)
|
|
if any(u -> u.min_uptime > 1 || u.min_downtime > 1, all_units)
|
|
error(
|
|
"The minimum up/down time of all generators must be 1. AELMP only supports fast-starts.",
|
|
)
|
|
end
|
|
if any(u -> u.initial_power > 0, all_units)
|
|
error("The initial power of all generators must be 0.")
|
|
end
|
|
if any(u -> u.initial_status >= 0, all_units)
|
|
error("The initial status of all generators must be negative.")
|
|
end
|
|
# CHECK: model does not support startup costs (in time series)
|
|
if any(u -> length(u.startup_categories) > 1, all_units)
|
|
error("The method does NOT support time-varying start-up costs.")
|
|
end
|
|
end
|
|
|
|
function _modify_scenario!(
|
|
sc::UnitCommitmentScenario,
|
|
model::JuMP.Model,
|
|
method::AELMP,
|
|
)
|
|
# this function modifies the sc units (generators)
|
|
if !method.allow_offline_participation
|
|
# 1. remove (if NOT allowing) the offline generators
|
|
units_to_remove = []
|
|
for unit in sc.units
|
|
# remove based on the solved UC model result
|
|
# remove the unit if it is never on
|
|
if all(t -> value(model[:is_on][unit.name, t]) == 0, sc.time)
|
|
# unregister from the bus
|
|
filter!(x -> x.name != unit.name, unit.bus.units)
|
|
# unregister from the reserve
|
|
for r in unit.reserves
|
|
filter!(x -> x.name != unit.name, r.units)
|
|
end
|
|
# append the name to the remove list
|
|
push!(units_to_remove, unit.name)
|
|
end
|
|
end
|
|
# unregister the units from the remove list
|
|
filter!(x -> !(x.name in units_to_remove), sc.units)
|
|
end
|
|
|
|
for unit in sc.units
|
|
# 2. set min generation requirement to 0 by adding 0 to production curve and cost
|
|
# min_power & min_costs are vectors with dimension T
|
|
if unit.min_power[1] != 0
|
|
first_cost_segment = unit.cost_segments[1]
|
|
pushfirst!(
|
|
unit.cost_segments,
|
|
CostSegment(
|
|
ones(size(first_cost_segment.mw)) * unit.min_power[1],
|
|
ones(size(first_cost_segment.cost)) *
|
|
unit.min_power_cost[1] / unit.min_power[1],
|
|
),
|
|
)
|
|
unit.min_power = zeros(size(first_cost_segment.mw))
|
|
unit.min_power_cost = zeros(size(first_cost_segment.cost))
|
|
end
|
|
|
|
# 3. average the start-up costs (if considering)
|
|
# if consider_startup_costs = false, then use the current first_startup_cost
|
|
first_startup_cost = unit.startup_categories[1].cost
|
|
if method.consider_startup_costs
|
|
additional_unit_cost = first_startup_cost / unit.max_power[1]
|
|
for i in eachindex(unit.cost_segments)
|
|
unit.cost_segments[i].cost .+= additional_unit_cost
|
|
end
|
|
first_startup_cost = 0.0 # zero out the start up cost
|
|
end
|
|
unit.startup_categories =
|
|
StartupCategory[StartupCategory(0, first_startup_cost)]
|
|
end
|
|
return sc.units_by_name = Dict(g.name => g for g in sc.units)
|
|
end
|