You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
UnitCommitment.jl/src/model2.jl

476 lines
18 KiB

# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
# Writen by Alinson S. Xavier <axavier@anl.gov>
using JuMP, MathOptInterface, DataStructures
import JuMP: value, fix, set_name
# Extend some JuMP functions so that decision variables can be safely replaced by
# (constant) floating point numbers.
function value(x::Float64)
x
end
function fix(x::Float64, v::Float64; force)
abs(x - v) < 1e-6 || error("Value mismatch: $x != $v")
end
function set_name(x::Float64, n::String)
# nop
end
"""
Create a JuMP model using the variables and constraints defined by
the collection of `UCComponent`s in `formulation`.
Parameters
===
* `isf`: injection shift factors
* `lodf`: line outage distribution factors
"""
function build_model(;
filename::Union{String, Nothing}=nothing,
instance::Union{UnitCommitmentInstance, Nothing}=nothing,
isf::Union{Array{Float64,2}, Nothing}=nothing,
lodf::Union{Array{Float64,2}, Nothing}=nothing,
isf_cutoff::Float64=0.005,
lodf_cutoff::Float64=0.001,
optimizer=nothing,
model=nothing,
variable_names::Bool=false,
formulation::Vector{UCComponent} = UnitCommitment.DefaultFormulation,
) :: UnitCommitmentModel2
if (filename == nothing) && (instance == nothing)
error("Either filename or instance must be specified")
end
if filename != nothing
@info "Reading: $(filename)"
time_read = @elapsed begin
instance = UnitCommitment.read(filename)
end
@info @sprintf("Read problem in %.2f seconds", time_read)
end
if length(instance.buses) == 1
isf = zeros(0, 0)
lodf = zeros(0, 0)
else
if isf == nothing
@info "Computing injection shift factors..."
time_isf = @elapsed begin
isf = UnitCommitment.injection_shift_factors(lines=instance.lines,
buses=instance.buses)
end
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
@info "Computing line outage factors..."
time_lodf = @elapsed begin
lodf = UnitCommitment.line_outage_factors(lines=instance.lines,
buses=instance.buses,
isf=isf)
end
@info @sprintf("Computed LODF in %.2f seconds", time_lodf)
@info @sprintf("Applying PTDF and LODF cutoffs (%.5f, %.5f)", isf_cutoff, lodf_cutoff)
isf[abs.(isf) .< isf_cutoff] .= 0
lodf[abs.(lodf) .< lodf_cutoff] .= 0
end
end
@info "Building model..."
time_model = @elapsed begin
if model == nothing
if optimizer == nothing
mip = Model()
else
mip = Model(optimizer)
end
else
mip = model
end
@info "About to build model"
model = UnitCommitmentModel2(mip, # JuMP.Model
DotDict(), # vars
DotDict(), # eqs
DotDict(), # exprs
instance, # UnitCommitmentInstance
isf, # injection shift factors
lodf, # line outage distribution factors
AffExpr(), # obj
formulation, # formulation
)
# Prepare variables
for var in get_required_variables(formulation)
add_variable(mip, model, instance, UnitCommitment.var_list[var])
end # prepare variables
# Prepare constraints
for constr in get_required_constraints(formulation)
add_constraint(mip, model, instance, constr)
end # prepare constraints
# Prepare expressions (in this case, affine expressions that are later used as part of constraints or objective)
# * :startup_cost => contribution to objective of startup costs
for field in [:startup_cost] #[:net_injection]
setproperty!(model.exprs, field, OrderedDict())
end
# Add components to mip
for c in formulation
c.add_component(c, mip, model)
end
# Add objective function
build_obj_function!(model)
end # end timing of building model
@info @sprintf("Built model in %.2f seconds", time_model)
if variable_names
set_variable_names!(model)
end
return model
end # build_model
"""
Add a particular variable to `model.vars`.
"""
function add_variable(mip::JuMP.Model,
model::UnitCommitmentModel2,
instance::UnitCommitmentInstance,
var::UCVariable)
setproperty!(model.vars, var.name, OrderedDict())
x = getproperty(model.vars, var.name)
if !isnothing(var.add_variable)
var.add_variable(var, x, mip, instance)
return
end
# The following is a bit complex-looking, but the idea is ultimately straightforward
# We want to loop over the possible index values for var,
# for every dimension of var (e.g., looping over units and time)
# The OrderedDict `ind_to_field` maps a UCElement to the corresponding field name within a UnitCommitmentInstance
# NB: this can be an array of field names, such as [:x, :y], which means we want to access instance.x.y
# Furthermore, `var` has an array `indices` of UCElement values, describing which index loops over
# So all we want is to extract the _length_ of the corresponding field of `instance`
# We create a Tuple so we can feed it to CartesianIndices
fields = UnitCommitment.ind_to_field(var.indices)
num_indices = UnitCommitment.num_indices(fields)
# There is some really complicated logic below that one day needs to be improved
# (we need to handle nested indices, and this is one way that hopefully works, but it is definitely not intuitive)
loop_primitive = UnitCommitment.loop_over_indices(UnitCommitment.get_indices_tuple(instance, fields))
indices = UnitCommitment.get_indices(loop_primitive) # returns an array of tuples? or a unit range maybe.
for ind in indices
# For each of the indices, check if the field corresponding to that index has a name
# Then we will index the variable by that name instead of the integer
curr_tuple = Tuple(ind)
new_tuple = ()
for i in 1:num_indices
curr_field = UnitCommitment.get_nested_field(instance, fields, i, curr_tuple)
if :name in propertynames(curr_field)
new_tuple = (new_tuple..., curr_field.name)
else
new_tuple = (new_tuple..., curr_tuple[i])
end
end
name = string(var.name, "[")
for (i,val) in enumerate(new_tuple)
name = string(name, val, i < num_indices ? "," : "")
end
name = string(name, "]")
if num_indices == 1
new_tuple = new_tuple[1]
end
x[new_tuple] = @variable(mip,
lower_bound=var.lb,
upper_bound=var.ub,
integer=var.integer,
base_name=name)
end
### DEBUG
#if var.name == :reserve_shortfall
# @show var.name, num_indices, loop_primitive, indices, x
# #@show JuMP.all_variables(mip)
#end
### DEBUG
end # add_variable
"""
Add constraint to `model.eqs` (set of affine expressions represent left-hand side of constraints).
"""
function add_constraint(mip::JuMP.Model,
model::UnitCommitmentModel2,
instance::UnitCommitmentInstance,
constr::Symbol)
setproperty!(model.eqs, constr, OrderedDict())
end # add_constraint
"""
Components of the objective include, summed over time:
* production cost above minimum
* minimum production cost if generator is on
* startup cost
* shutdown cost
* cost of not meeting shortfall
* penalty for not meeting or exceeding load (using curtai variable)
* shutdown cost
"""
function build_obj_function!(model::UnitCommitmentModel2)
@objective(model.mip, Min, model.obj)
end # build_obj_function
function enforce_transmission(;
model::UnitCommitmentModel2,
violation::Violation,
isf::Array{Float64,2},
lodf::Array{Float64,2})::Nothing
instance, mip, vars = model.instance, model.mip, model.vars
limit::Float64 = 0.0
if violation.outage_line == nothing
limit = violation.monitored_line.normal_flow_limit[violation.time]
@info @sprintf(" %8.3f MW overflow in %-5s time %3d (pre-contingency)",
violation.amount,
violation.monitored_line.name,
violation.time)
else
limit = violation.monitored_line.emergency_flow_limit[violation.time]
@info @sprintf(" %8.3f MW overflow in %-5s time %3d (outage: line %s)",
violation.amount,
violation.monitored_line.name,
violation.time,
violation.outage_line.name)
end
fm = violation.monitored_line.name
t = violation.time
flow = @variable(mip, base_name="flow[$fm,$t]")
# |flow| <= limit + overflow
overflow = vars.overflow[violation.monitored_line.name, violation.time]
@constraint(mip, flow <= limit + overflow)
@constraint(mip, -flow <= limit + overflow)
if violation.outage_line == nothing
@constraint(mip, flow == sum(vars.net_injection[b.name, violation.time] *
isf[violation.monitored_line.offset, b.offset]
for b in instance.buses
if b.offset > 0))
else
@constraint(mip, flow == sum(vars.net_injection[b.name, violation.time] * (
isf[violation.monitored_line.offset, b.offset] + (
lodf[violation.monitored_line.offset, violation.outage_line.offset] *
isf[violation.outage_line.offset, b.offset]
)
)
for b in instance.buses
if b.offset > 0))
end
nothing
end # enforce_transmission
function set_variable_names!(model::UnitCommitmentModel2)
@info "Setting variable and constraint names..."
time_varnames = @elapsed begin
#set_jump_names!(model.vars) # amk: already set
set_jump_names!(model.eqs)
end
@info @sprintf("Set names in %.2f seconds", time_varnames)
end # set_variable_names
function set_jump_names!(dict)
for name in keys(dict)
for idx in keys(dict[name])
idx_str = isa(idx, Tuple) ? join(map(string, idx), ",") : idx
set_name(dict[name][idx], "$name[$idx_str]")
end
end
end # set_jump_names
function get_solution(model::UnitCommitmentModel2)
instance, T = model.instance, model.instance.time
function timeseries(vars, collection)
return OrderedDict(b.name => [round(value(vars[b.name, t]), digits=5) for t in 1:T]
for b in collection)
end
function production_cost(g)
return [value(model.vars.is_on[g.name, t]) * g.min_power_cost[t] +
sum(Float64[value(model.vars.segprod[g.name, k, t]) * g.cost_segments[k].cost[t]
for k in 1:length(g.cost_segments)])
for t in 1:T]
end
function production(g)
return [value(model.vars.is_on[g.name, t]) * g.min_power[t] +
sum(Float64[value(model.vars.segprod[g.name, k, t])
for k in 1:length(g.cost_segments)])
for t in 1:T]
end
function startup_cost(g)
#S = length(g.startup_categories)
#return [sum(g.startup_categories[s].cost * value(model.vars.startup[g.name, s, t])
# for s in 1:S)
# for t in 1:T]
return [ value.(model.exprs.startup_cost[g.name, t]) for t in 1:T ]
end
sol = OrderedDict()
sol["Production (MW)"] = OrderedDict(g.name => production(g) for g in instance.units)
sol["Production cost (\$)"] = OrderedDict(g.name => production_cost(g) for g in instance.units)
sol["Startup cost (\$)"] = OrderedDict(g.name => startup_cost(g) for g in instance.units)
sol["Is on"] = timeseries(model.vars.is_on, instance.units)
sol["Switch on"] = timeseries(model.vars.switch_on, instance.units)
sol["Switch off"] = timeseries(model.vars.switch_off, instance.units)
sol["Reserve (MW)"] = timeseries(model.vars.reserve, instance.units)
sol["Net injection (MW)"] = timeseries(model.vars.net_injection, instance.buses)
sol["Load curtail (MW)"] = timeseries(model.vars.curtail, instance.buses)
if !isempty(instance.lines)
sol["Line overflow (MW)"] = timeseries(model.vars.overflow, instance.lines)
end
if !isempty(instance.price_sensitive_loads)
sol["Price-sensitive loads (MW)"] = timeseries(model.vars.loads, instance.price_sensitive_loads)
end
return sol
end # get_solution
function fix!(model::UnitCommitmentModel2, solution)::Nothing
vars, instance, T = model.vars, model.instance, model.instance.time
for g in instance.units
for t in 1:T
is_on = round(solution["Is on"][g.name][t])
production = round(solution["Production (MW)"][g.name][t], digits=5)
reserve = round(solution["Reserve (MW)"][g.name][t], digits=5)
JuMP.fix(vars.is_on[g.name, t], is_on, force=true)
JuMP.fix(vars.prod_above[g.name, t], production - is_on * g.min_power[t], force=true)
JuMP.fix(vars.reserve[g.name, t], reserve, force=true)
end
end
end # fix!
function set_warm_start!(model::UnitCommitmentModel2, solution)::Nothing
vars, instance, T = model.vars, model.instance, model.instance.time
for g in instance.units
for t in 1:T
JuMP.set_start_value(vars.is_on[g.name, t], solution["Is on"][g.name][t])
JuMP.set_start_value(vars.switch_on[g.name, t], solution["Switch on"][g.name][t])
JuMP.set_start_value(vars.switch_off[g.name, t], solution["Switch off"][g.name][t])
end
end
end # set_warm_start
function optimize!(model::UnitCommitmentModel2;
time_limit=3600,
gap_limit=1e-4,
two_phase_gap=true,
)::Nothing
function set_gap(gap)
try
JuMP.set_optimizer_attribute(model.mip, "MIPGap", gap)
@info @sprintf("MIP gap tolerance set to %f", gap)
catch
@warn "Could not change MIP gap tolerance"
end
end
instance = model.instance
initial_time = time()
large_gap = false
has_transmission = (length(model.isf) > 0)
if has_transmission && two_phase_gap
set_gap(1e-2)
large_gap = true
else
set_gap(gap_limit)
end
while true
time_elapsed = time() - initial_time
time_remaining = time_limit - time_elapsed
if time_remaining < 0
@info "Time limit exceeded"
break
end
@info @sprintf("Setting MILP time limit to %.2f seconds", time_remaining)
JuMP.set_time_limit_sec(model.mip, time_remaining)
@info "Solving MILP..."
JuMP.optimize!(model.mip)
has_transmission || break
violations = find_violations(model)
if isempty(violations)
@info "No violations found"
if large_gap
large_gap = false
set_gap(gap_limit)
else
break
end
else
enforce_transmission(model, violations)
end
end
nothing
end # optimize!
"""
Identify which transmission lines are violated.
See find_violations description from screening.jl.
"""
function find_violations(model::UnitCommitmentModel2)
instance, vars = model.instance, model.vars
length(instance.buses) > 1 || return []
violations = []
@info "Verifying transmission limits..."
time_screening = @elapsed begin
non_slack_buses = [b for b in instance.buses if b.offset > 0]
net_injections = [value(vars.net_injection[b.name, t])
for b in non_slack_buses, t in 1:instance.time]
overflow = [value(vars.overflow[lm.name, t])
for lm in instance.lines, t in 1:instance.time]
violations = UnitCommitment.find_violations(instance=instance,
net_injections=net_injections,
overflow=overflow,
isf=model.isf,
lodf=model.lodf)
end
@info @sprintf("Verified transmission limits in %.2f seconds", time_screening)
return violations
end # find_violations
function enforce_transmission(model::UnitCommitmentModel2, violations::Array{Violation, 1})
for v in violations
enforce_transmission(model=model,
violation=v,
isf=model.isf,
lodf=model.lodf)
end
end # enforce_transmission
export UnitCommitmentModel2, build_model, get_solution, optimize!