You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
UnitCommitment.jl/benchmark/scripts/table.py

212 lines
7.1 KiB

# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from pathlib import Path
import pandas as pd
import re
from tabulate import tabulate
def process_all_log_files():
pathlist = list(Path(".").glob("results/*/*/*.log"))
pathlist += list(Path(".").glob("results/*/*.log"))
rows = []
for path in pathlist:
if ".ipy" in str(path):
continue
row = process(str(path))
rows += [row]
df = pd.DataFrame(rows)
df = df.sort_values(["Group", "Buses"])
df.index = range(len(df))
print("Writing tables/benchmark.csv")
df.to_csv("tables/benchmark.csv", index_label="Index")
def process(filename):
parts = filename.replace(".log", "").split("/")
group_name = "/".join(parts[1:-1])
instance_name = parts[-1]
instance_name, sample_name = instance_name.split(".")
nodes = 0.0
optimize_time = 0.0
simplex_iterations = 0.0
primal_bound = None
dual_bound = None
gap = None
root_obj = None
root_iterations = 0.0
root_time = 0.0
n_rows_orig, n_rows_presolved = None, None
n_cols_orig, n_cols_presolved = None, None
n_nz_orig, n_nz_presolved = None, None
n_cont_vars_presolved, n_bin_vars_presolved = None, None
read_time, model_time, isf_time, total_time = None, None, None, None
cb_calls, cb_time = 0, 0.0
transmission_count, transmission_time, transmission_calls = 0, 0.0, 0
# m = re.search("case([0-9]*)", instance_name)
# n_buses = int(m.group(1))
n_buses = 0
with open(filename) as file:
for line in file.readlines():
m = re.search(
r"Explored ([0-9.e+]*) nodes \(([0-9.e+]*) simplex iterations\) in ([0-9.e+]*) seconds",
line,
)
if m is not None:
nodes += int(m.group(1))
simplex_iterations += int(m.group(2))
optimize_time += float(m.group(3))
m = re.search(
r"Best objective ([0-9.e+]*), best bound ([0-9.e+]*), gap ([0-9.e+]*)\%",
line,
)
if m is not None:
primal_bound = float(m.group(1))
dual_bound = float(m.group(2))
gap = round(float(m.group(3)), 3)
m = re.search(
r"Root relaxation: objective ([0-9.e+]*), ([0-9.e+]*) iterations, ([0-9.e+]*) seconds",
line,
)
if m is not None:
root_obj = float(m.group(1))
root_iterations += int(m.group(2))
root_time += float(m.group(3))
m = re.search(
r"Presolved: ([0-9.e+]*) rows, ([0-9.e+]*) columns, ([0-9.e+]*) nonzeros",
line,
)
if m is not None:
n_rows_presolved = int(m.group(1))
n_cols_presolved = int(m.group(2))
n_nz_presolved = int(m.group(3))
m = re.search(
r"Optimize a model with ([0-9.e+]*) rows, ([0-9.e+]*) columns and ([0-9.e+]*) nonzeros",
line,
)
if m is not None:
n_rows_orig = int(m.group(1))
n_cols_orig = int(m.group(2))
n_nz_orig = int(m.group(3))
m = re.search(
r"Variable types: ([0-9.e+]*) continuous, ([0-9.e+]*) integer \(([0-9.e+]*) binary\)",
line,
)
if m is not None:
n_cont_vars_presolved = int(m.group(1))
n_bin_vars_presolved = int(m.group(3))
m = re.search(r"Read problem in ([0-9.e+]*) seconds", line)
if m is not None:
read_time = float(m.group(1))
m = re.search(r"Computed ISF in ([0-9.e+]*) seconds", line)
if m is not None:
isf_time = float(m.group(1))
m = re.search(r"Built model in ([0-9.e+]*) seconds", line)
if m is not None:
model_time = float(m.group(1))
m = re.search(r"Total time was ([0-9.e+]*) seconds", line)
if m is not None:
total_time = float(m.group(1))
m = re.search(
r"User-callback calls ([0-9.e+]*), time in user-callback ([0-9.e+]*) sec",
line,
)
if m is not None:
cb_calls = int(m.group(1))
cb_time = float(m.group(2))
m = re.search(r"Verified transmission limits in ([0-9.e+]*) sec", line)
if m is not None:
transmission_time += float(m.group(1))
transmission_calls += 1
m = re.search(r".*MW overflow", line)
if m is not None:
transmission_count += 1
return {
"Group": group_name,
"Instance": instance_name,
"Sample": sample_name,
"Optimization time (s)": optimize_time,
"Read instance time (s)": read_time,
"Model construction time (s)": model_time,
"ISF & LODF computation time (s)": isf_time,
"Total time (s)": total_time,
"User-callback time": cb_time,
"User-callback calls": cb_calls,
"Gap (%)": gap,
"B&B Nodes": nodes,
"Simplex iterations": simplex_iterations,
"Primal bound": primal_bound,
"Dual bound": dual_bound,
"Root relaxation iterations": root_iterations,
"Root relaxation time": root_time,
"Root relaxation value": root_obj,
"Rows": n_rows_orig,
"Cols": n_cols_orig,
"Nonzeros": n_nz_orig,
"Rows (presolved)": n_rows_presolved,
"Cols (presolved)": n_cols_presolved,
"Nonzeros (presolved)": n_nz_presolved,
"Bin vars (presolved)": n_bin_vars_presolved,
"Cont vars (presolved)": n_cont_vars_presolved,
"Buses": n_buses,
"Transmission screening constraints": transmission_count,
"Transmission screening time": transmission_time,
"Transmission screening calls": transmission_calls,
}
def generate_chart():
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
tables = []
files = ["tables/benchmark.csv"]
for f in files:
table = pd.read_csv(f, index_col=0)
table.loc[:, "Instance"] = (
table.loc[:, "Group"] + "/" + table.loc[:, "Instance"]
)
table.loc[:, "Filename"] = f
tables += [table]
benchmark = pd.concat(tables, sort=True)
benchmark = benchmark.sort_values(by="Instance")
k = len(benchmark.groupby("Instance"))
plt.figure(figsize=(12, 0.50 * k))
sns.set_style("whitegrid")
sns.set_palette("Set1")
sns.barplot(
y="Instance",
x="Total time (s)",
color="tab:red",
capsize=0.15,
errcolor="k",
errwidth=1.25,
data=benchmark,
)
plt.tight_layout()
print("Writing tables/benchmark.png")
plt.savefig("tables/benchmark.png", dpi=150)
if __name__ == "__main__":
process_all_log_files()
generate_chart()