You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
UnitCommitment.jl/src/model/formulations/MorLatRam2013/ramp.jl

128 lines
5.0 KiB

# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::MorLatRam2013.Ramping,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
RESERVES_WHEN_RAMP_UP = true
RESERVES_WHEN_RAMP_DOWN = true
RESERVES_WHEN_SHUT_DOWN = true
is_initially_on = (g.initial_status > 0)
SU = g.startup_limit
SD = g.shutdown_limit
RU = g.ramp_up_limit
RD = g.ramp_down_limit
gn = g.name
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_str_ramp_up)
reserve = model[:reserve]
# Gar1962.ProdVars
prod_above = model[:prod_above]
# Gar1962.StatusVars
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t = 1:model[:instance].time
time_invariant = (t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
# Ramp up limit
if t == 1
if is_initially_on
eq_ramp_up[gn, t] = @constraint(
model,
g.min_power[t] +
prod_above[gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) <=
g.initial_power + RU
)
end
else
# amk: without accounting for time-varying min power terms,
# we might get an infeasible schedule, e.g. if min_power[t-1] = 0, min_power[t] = 10
# and ramp_up_limit = 5, the constraint (p'(t) + r(t) <= p'(t-1) + RU)
# would be satisfied with p'(t) = r(t) = p'(t-1) = 0
# Note that if switch_on[t] = 1, then eqns (20) or (21) go into effect
if !time_invariant
# Use equation (24) instead
SU = g.startup_limit
max_prod_this_period =
g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] +
(
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[gn, t] :
0.0
)
min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
eq_ramp_up[gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
)
else
# Equation (26) in Kneuven et al. (2020)
# TODO: what if RU < SU? places too stringent upper bound
# prod_above[gn, t] when starting up, and creates diff with (24).
eq_ramp_up[gn, t] = @constraint(
model,
prod_above[gn, t] + (RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) -
prod_above[gn, t-1] <= RU
)
end
end
# Ramp down limit
if t == 1
if is_initially_on
# TODO If RD < SD, or more specifically if
# min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint(
model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
)
end
else
# amk: similar to ramp_up, need to account for time-dependent min_power
if !time_invariant
# Revert to (25)
SD = g.shutdown_limit
max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] +
(
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[gn, t-1] : 0.0
)
min_prod_this_period = g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
eq_ramp_down[gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
RD * is_on[gn, t] + SD * switch_off[gn, t]
)
else
# Equation (27) in Kneuven et al. (2020)
# TODO: Similar to above, what to do if shutting down in time t
# and RD < SD? There is a difference with (25).
eq_ramp_down[gn, t] = @constraint(
model,
prod_above[gn, t-1] +
(RESERVES_WHEN_RAMP_DOWN ? reserve[gn, t-1] : 0.0) -
prod_above[gn, t] <= RD
)
end
end
end
end