mirror of
https://github.com/ANL-CEEESA/powersas.m.git
synced 2025-12-10 03:48:52 -06:00
First release of PowerSAS.m
This commit is contained in:
527
internal/solveAlgebraicNR.m
Normal file
527
internal/solveAlgebraicNR.m
Normal file
@@ -0,0 +1,527 @@
|
||||
function [stateNew,flag,diffRec,loop]=solveAlgebraicNR(SimData,SysData,SysPara,x0,xNew,SysDataNew)
|
||||
% General Newton-Raphson computation for solving the algebraic equations
|
||||
%
|
||||
% FUNCTION restorationAlgebraicNR (will be renamed in a future version)
|
||||
%
|
||||
% Author: Rui Yao <ruiyao@ieee.org>
|
||||
%
|
||||
% Copyright (C) 2021, UChicago Argonne, LLC. All rights reserved.
|
||||
%
|
||||
% OPEN SOURCE LICENSE
|
||||
%
|
||||
% Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
||||
%
|
||||
% 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
||||
% 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
||||
% 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
|
||||
%
|
||||
%
|
||||
% ******************************************************************************************************
|
||||
% DISCLAIMER
|
||||
%
|
||||
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
|
||||
% WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
% PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
|
||||
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||||
% OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
% ***************************************************************************************************
|
||||
%
|
||||
% INPUT
|
||||
% SimData - Simulation parameters
|
||||
% SysData - System data for simulation
|
||||
% SysPara - Parameters representing the events happening in the system
|
||||
% x0 - Initial system state
|
||||
% xNew - New system state (algebraic variables need to be solved)
|
||||
% SysDataNew - NOT USED
|
||||
%
|
||||
% OUTPUT
|
||||
% stateNew - Solved state (only algebraic variables changed)
|
||||
% flag
|
||||
% 0 - returned normally
|
||||
% -1- Fail
|
||||
% diffRec - Final maximum difference
|
||||
% loop - number of loops to finish NR
|
||||
%
|
||||
% TODO % Check input argument SysDataNew if it is necessary
|
||||
|
||||
setting_func_restorationAlgebraicNR;
|
||||
|
||||
addLog('[#START#]Solving algebraic equations - NR.','INFO');
|
||||
|
||||
[bus,sw,pv,pq,shunt,line,ind,zip,syn,exc,tg,agc,cac,cluster]=unfoldSysData(SysData);
|
||||
if nargin>=6
|
||||
[~,~,~,~,~,~,~,~,synNew,~,~]=unfoldSysData(SysData);
|
||||
else
|
||||
synNew=[];
|
||||
end
|
||||
[nState,idxs]...
|
||||
=getIndexDyn(SysData);
|
||||
% [V0,Q0,s0,d0,w0,eq10,eq20,ed10,ed20,psid0,psiq0,Pm0,Ef0,Vavrm0,Vavrr0,Vavrf0,Vavrref0,tgovg0,tgovm0,tgovmech0]=unfoldX(x0,SysData);
|
||||
% [~,~,sNew,dNew,~,eq1New,eq2New,ed1New,ed2New,psidNew,psiqNew,~,EfNew,~,~,~,~,~,~,~]=unfoldX(xNew,SysData);
|
||||
[maxTime,segTime,dt,nlvl,taylorN,alphaTol,diffTol,diffTolMax,method]=unfoldSimData(SimData);
|
||||
AEmethod=round(10*mod(method,1));
|
||||
if isempty(AEmethod)
|
||||
AEmethod=1;
|
||||
end
|
||||
|
||||
[pqIncr,pvIncr,Rind0,Rind1,~,~,Rzip0,Rzip1,Ytr0,Ytr1,Ysh0,Ysh1,VspSq2,MatGV0,MatGV1,MatGRhs0,MatGRhs1]=unfoldSysPara(SysPara);
|
||||
% The Y matrices may be with faults, so don't re-generate them!
|
||||
|
||||
[V0,Q0,s0,d0,w0,eq10,eq20,ed10,ed20,psid0,psiq0,Pm0,Ef0,Vavrm0,Vavrr0,Vavrf0,Vavrref0,tgovg0,tgovm0,tgovmech0,f0,dpg0,qplt0,vg0]=unfoldX(x0,SysData);
|
||||
eq0=Ef0;ed0=zeros(size(Ef0));
|
||||
[~,~,sNew,dNew,~,eq1New,eq2New,ed1New,ed2New,psidNew,psiqNew,~,EfNew,~,~,~,~,~,~,~]=unfoldX(xNew,SysData);
|
||||
eqNew=EfNew;edNew=zeros(size(EfNew));
|
||||
|
||||
[MatGV0,MatGV1,MatGRhs0,MatGRhs1]=getLinearInterpolatorSyn(syn,synNew,d0,dNew,ed0,ed10,ed20,edNew,ed1New,ed2New,eq0,eq10,eq20,eqNew,eq1New,eq2New,psid0,psiq0,psidNew,psiqNew);
|
||||
nbus=size(bus,1);
|
||||
if ~isempty(ind)
|
||||
[YshInd0,Yshind1]=getLinearInterpolatorInd(nbus,ind,s0,sNew);
|
||||
Ysh0=Ysh0+YshInd0;
|
||||
Ysh1=Ysh1+Yshind1;
|
||||
end
|
||||
[nIslands,islands,refs]=searchIslands(bus(:,1),line(:,1:2));
|
||||
|
||||
nbus=size(bus,1);
|
||||
nline=size(line,1);
|
||||
nInd=size(ind,1);
|
||||
nZip=size(zip,1);
|
||||
nSyn=size(syn,1);
|
||||
|
||||
busType=zeros(nbus,1);
|
||||
if isempty(pv)
|
||||
pv=zeros(0,6);
|
||||
end
|
||||
if isempty(pq)
|
||||
pq=zeros(0,6);
|
||||
end
|
||||
if isempty(shunt)
|
||||
shunt=zeros(0,7);
|
||||
end
|
||||
if isempty(sw)
|
||||
sw=zeros(0,13);
|
||||
end
|
||||
busType(pv(:,1))=1;
|
||||
busType(sw(:,1))=2;
|
||||
|
||||
isw=find(busType==2);
|
||||
ipv=find(busType~=0);
|
||||
ipq=find(busType==0);
|
||||
npq=size(ipq,1);
|
||||
npv=size(ipv,1);
|
||||
|
||||
if isempty(VspSq2)
|
||||
V0=x0(idxs.vIdx);
|
||||
VspSq2=[abs(V0).*abs(V0),zeros(nbus,1)];
|
||||
end
|
||||
|
||||
% Determine the frequency model of each island
|
||||
freqTypeTag=zeros(nIslands,1);%0:sw,1:syn,2:steady-state f
|
||||
freqKeptTag=zeros(nbus,1);
|
||||
frefs=refs;
|
||||
fswTag=zeros(nbus,1);
|
||||
fsynTag=zeros(nbus,1);
|
||||
fswTag(isw)=1;
|
||||
fswTagxD=fswTag;
|
||||
fsynTag(syn(:,1))=1;
|
||||
D0=imag(V0);
|
||||
for isl=1:nIslands
|
||||
if isempty(find(fswTag(islands==isl)==1, 1))
|
||||
if isempty(find(fsynTag(islands==isl)==1, 1))
|
||||
freqTypeTag(isl)=2;
|
||||
busesInIsland=find(islands==isl);
|
||||
[~,imin]=min(abs(D0(busesInIsland)));
|
||||
frefs(isl)=busesInIsland(imin(1));
|
||||
fswTagxD(frefs(isl))=1;
|
||||
freqKeptTag(busesInIsland)=1;
|
||||
else
|
||||
freqTypeTag(isl)=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
freqKeptTagxRef=freqKeptTag;
|
||||
freqKeptTagxRef(frefs)=0;
|
||||
nFreqKept=sum(freqKeptTag);
|
||||
|
||||
if ~isempty(agc)
|
||||
agcExt=zeros(nbus,size(agc,2));
|
||||
agcExt(agc(:,1),:)=agc;
|
||||
fdk=agcExt(:,2)+agcExt(:,3); %1/R+D
|
||||
else
|
||||
fdk=zeros(nbus,1);
|
||||
end
|
||||
|
||||
yShunt=zeros(nbus,1);
|
||||
yShunt(shunt(:,1))=shunt(:,5)+1j*shunt(:,6);
|
||||
Ysh0=Ysh0+yShunt;
|
||||
Ysh0=Ysh0+accumarray(zip(:,1),(Rzip0).*(zip(:,5)+1j*zip(:,8)),[nbus,1]);
|
||||
Ysh1=Ysh1+accumarray(zip(:,1),(Rzip1).*(zip(:,5)+1j*zip(:,8)),[nbus,1]);
|
||||
|
||||
% VspSq2=zeros(nbus,1);
|
||||
% pqIncrS=zeros(size(pq,1),2);pvIncrS=zeros(size(pv,1),1);
|
||||
% Rzip0S=ones(nZip,1);Rzip1S=zeros(nZip,1);
|
||||
% Rind0S=ones(nInd,1);Rind1S=zeros(nInd,1);
|
||||
Reind0=ones(nInd,1);Reind1=zeros(nInd,1);
|
||||
|
||||
if ~isempty(Ytr1)
|
||||
YtrNew=Ytr0+Ytr1;
|
||||
else
|
||||
YtrNew=Ytr0;
|
||||
end
|
||||
YshNew=Ysh0+Ysh1;
|
||||
YNew=YtrNew+sparse(1:nbus,1:nbus,YshNew,nbus,nbus);
|
||||
|
||||
MatGVNew=MatGV0+MatGV1;
|
||||
MatGRhsNew=MatGRhs0+MatGRhs1;
|
||||
|
||||
SNew=-accumarray(pq(:,1),pq(:,4)+1j*pq(:,5),[nbus,1])+accumarray(pv(:,1),pv(:,4),[nbus,1]);
|
||||
SNew=SNew-accumarray(pq(:,1),pqIncr(:,1)+1j*pqIncr(:,2),[nbus,1])+accumarray(pv(:,1),pvIncr,[nbus,1]);
|
||||
SNew=SNew-accumarray(zip(:,1),(Rzip0+Rzip1).*(zip(:,7)+1j*zip(:,10)),[nbus,1]);
|
||||
|
||||
INew=-accumarray(zip(:,1),(Rzip0+Rzip1).*(zip(:,6)-1j*zip(:,9)),[nbus,1]);
|
||||
JNew=real(INew);
|
||||
KNew=imag(INew);
|
||||
|
||||
GNew=real(YNew);BNew=imag(YNew);
|
||||
J1=GNew+sparse(syn(:,1),syn(:,1),MatGVNew(:,1),nbus,nbus);
|
||||
J2=-BNew+sparse(syn(:,1),syn(:,1),MatGVNew(:,2),nbus,nbus);
|
||||
J3=BNew+sparse(syn(:,1),syn(:,1),MatGVNew(:,3),nbus,nbus);
|
||||
J4=GNew+sparse(syn(:,1),syn(:,1),MatGVNew(:,4),nbus,nbus);
|
||||
P2freq=sparse(1:nbus,1:nbus,-freqKeptTag.*fdk,nbus,nbus);
|
||||
Freq2freq=sparse([1:nbus,1:nbus],[1:nbus,frefs(islands)'],[ones(1,nbus),-ones(1,nbus)],nbus,nbus);
|
||||
|
||||
Vtemp=V0;
|
||||
ftemp=f0;
|
||||
QTemp=Q0;
|
||||
|
||||
busTag=ones(nbus,1);
|
||||
busTag(sw(:,1))=0;
|
||||
jacRowTag=[busTag;busTag;freqKeptTagxRef];
|
||||
jacColTag=[busTag;fswTagxD==0;freqKeptTag];
|
||||
|
||||
idxNonSw=find(busType~=2);
|
||||
idxNonSwD=find(busType~=2&fswTagxD==1);
|
||||
|
||||
if AEmethod==1 % NR and damped NR
|
||||
for loop=1:maxLoop
|
||||
Ctemp=real(Vtemp);
|
||||
Dtemp=imag(Vtemp);
|
||||
Atemp=abs(Vtemp);
|
||||
Vgtemp=Vtemp(syn(:,1));
|
||||
Ig=accumarray(syn(:,1),MatGRhsNew(:,1)+1j*MatGRhsNew(:,2),[nbus,1])-...
|
||||
accumarray(syn(:,1),(MatGVNew(:,1).*real(Vgtemp)+MatGVNew(:,2).*imag(Vgtemp))+1j*(MatGVNew(:,3).*real(Vgtemp)+MatGVNew(:,4).*imag(Vgtemp)),[nbus,1]);
|
||||
diff=conj(SNew)+INew.*abs(Vtemp)+Ig.*conj(Vtemp)-(YNew*Vtemp).*conj(Vtemp);
|
||||
diffP=real(diff)+freqKeptTag.*(-fdk.*ftemp+dpg0);
|
||||
diffVQ=imag(diff);
|
||||
diffF=ftemp-ftemp(frefs(islands));
|
||||
if ~isempty(pv)
|
||||
diffVQ(pv(:,1))=abs(Vtemp(pv(:,1))).*abs(Vtemp(pv(:,1)))-sum(VspSq2(pv(:,1)),2);
|
||||
end
|
||||
tDiff=[diffP(idxNonSw);diffVQ(idxNonSw);diffF(freqKeptTagxRef==1)];
|
||||
if max(abs(tDiff))<diffTol
|
||||
QTemp=imag(diff);
|
||||
break;
|
||||
end
|
||||
dCtemp=sparse(1:nbus,1:nbus,Ctemp,nbus,nbus);
|
||||
dDtemp=sparse(1:nbus,1:nbus,Dtemp,nbus,nbus);
|
||||
Jac1=[dCtemp*J1+dDtemp*J3,dCtemp*J2+dDtemp*J4;...
|
||||
dCtemp*J3-dDtemp*J1,dCtemp*J4-dDtemp*J2];
|
||||
Jac2=[sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus),sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus),-sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus)];
|
||||
Jac3=[sparse(1:nbus,1:nbus,JNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,JNew.*Dtemp./Atemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,KNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,KNew.*Dtemp./Atemp,nbus,nbus)];
|
||||
Jac4=[sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus),sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus);...
|
||||
sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus),-sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus)];
|
||||
Jac=Jac3+Jac4-Jac1-Jac2;
|
||||
|
||||
JacVc=sparse(1:nbus,1:nbus,2*Ctemp,nbus,nbus);
|
||||
JacVd=sparse(1:nbus,1:nbus,2*Dtemp,nbus,nbus);
|
||||
|
||||
Jac(nbus+ipv,:)=[JacVc(ipv,:),JacVd(ipv,:)];
|
||||
|
||||
JacExt=[Jac,[P2freq;sparse(nbus,nbus)];...
|
||||
sparse(nbus,2*nbus),Freq2freq];
|
||||
|
||||
corr=-JacExt(jacRowTag==1,jacColTag==1)\tDiff*stepRatio;
|
||||
corrFull=zeros(3*nbus,1);
|
||||
corrFull(jacColTag==1)=corr;
|
||||
Vtemp=Vtemp+corrFull(1:nbus)+1j*corrFull((nbus+1):(2*nbus));
|
||||
ftemp=ftemp+corrFull((2*nbus+1):(3*nbus));
|
||||
QTemp=imag(diff);
|
||||
% QTemp(idxNonSw)
|
||||
end
|
||||
elseif AEmethod==2 % NRJ - jacobian adjustment once
|
||||
for loop=1:maxLoop
|
||||
VtempOrig=Vtemp;
|
||||
ftempOrig=ftemp;
|
||||
QTempOrig=QTemp;
|
||||
% 1st step
|
||||
Ctemp=real(Vtemp);
|
||||
Dtemp=imag(Vtemp);
|
||||
Atemp=abs(Vtemp);
|
||||
Vgtemp=Vtemp(syn(:,1));
|
||||
Ig=accumarray(syn(:,1),MatGRhsNew(:,1)+1j*MatGRhsNew(:,2),[nbus,1])-...
|
||||
accumarray(syn(:,1),(MatGVNew(:,1).*real(Vgtemp)+MatGVNew(:,2).*imag(Vgtemp))+1j*(MatGVNew(:,3).*real(Vgtemp)+MatGVNew(:,4).*imag(Vgtemp)),[nbus,1]);
|
||||
diff=conj(SNew)+INew.*abs(Vtemp)+Ig.*conj(Vtemp)-(YNew*Vtemp).*conj(Vtemp);
|
||||
diffP=real(diff)+freqKeptTag.*(-fdk.*ftemp+dpg0);
|
||||
diffVQ=imag(diff);
|
||||
diffF=ftemp-ftemp(frefs(islands));
|
||||
if ~isempty(pv)
|
||||
diffVQ(pv(:,1))=abs(Vtemp(pv(:,1))).*abs(Vtemp(pv(:,1)))-sum(VspSq2(pv(:,1)),2);
|
||||
end
|
||||
tDiff=[diffP(idxNonSw);diffVQ(idxNonSw);diffF(freqKeptTagxRef==1)];
|
||||
if max(abs(tDiff))<diffTol
|
||||
QTemp=imag(diff);
|
||||
break;
|
||||
end
|
||||
dCtemp=sparse(1:nbus,1:nbus,Ctemp,nbus,nbus);
|
||||
dDtemp=sparse(1:nbus,1:nbus,Dtemp,nbus,nbus);
|
||||
Jac1=[dCtemp*J1+dDtemp*J3,dCtemp*J2+dDtemp*J4;...
|
||||
dCtemp*J3-dDtemp*J1,dCtemp*J4-dDtemp*J2];
|
||||
Jac2=[sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus),sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus),-sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus)];
|
||||
Jac3=[sparse(1:nbus,1:nbus,JNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,JNew.*Dtemp./Atemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,KNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,KNew.*Dtemp./Atemp,nbus,nbus)];
|
||||
Jac4=[sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus),sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus);...
|
||||
sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus),-sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus)];
|
||||
Jac=Jac3+Jac4-Jac1-Jac2;
|
||||
|
||||
JacVc=sparse(1:nbus,1:nbus,2*Ctemp,nbus,nbus);
|
||||
JacVd=sparse(1:nbus,1:nbus,2*Dtemp,nbus,nbus);
|
||||
|
||||
Jac(nbus+ipv,:)=[JacVc(ipv,:),JacVd(ipv,:)];
|
||||
|
||||
JacExt=[Jac,[P2freq;sparse(nbus,nbus)];...
|
||||
sparse(nbus,2*nbus),Freq2freq];
|
||||
|
||||
corr=-JacExt(jacRowTag==1,jacColTag==1)\tDiff*0.5*stepRatio;
|
||||
corrFull=zeros(3*nbus,1);
|
||||
corrFull(jacColTag==1)=corr;
|
||||
Vtemp=Vtemp+corrFull(1:nbus)+1j*corrFull((nbus+1):(2*nbus));
|
||||
ftemp=ftemp+corrFull((2*nbus+1):(3*nbus));
|
||||
QTemp=imag(diff);
|
||||
% 2nd step
|
||||
Ctemp=real(Vtemp);
|
||||
Dtemp=imag(Vtemp);
|
||||
Atemp=abs(Vtemp);
|
||||
Vgtemp=Vtemp(syn(:,1));
|
||||
Ig=accumarray(syn(:,1),MatGRhsNew(:,1)+1j*MatGRhsNew(:,2),[nbus,1])-...
|
||||
accumarray(syn(:,1),(MatGVNew(:,1).*real(Vgtemp)+MatGVNew(:,2).*imag(Vgtemp))+1j*(MatGVNew(:,3).*real(Vgtemp)+MatGVNew(:,4).*imag(Vgtemp)),[nbus,1]);
|
||||
diff=conj(SNew)+INew.*abs(Vtemp)+Ig.*conj(Vtemp)-(YNew*Vtemp).*conj(Vtemp);
|
||||
diffP=real(diff)+freqKeptTag.*(-fdk.*ftemp+dpg0);
|
||||
diffVQ=imag(diff);
|
||||
diffF=ftemp-ftemp(frefs(islands));
|
||||
if ~isempty(pv)
|
||||
diffVQ(pv(:,1))=abs(Vtemp(pv(:,1))).*abs(Vtemp(pv(:,1)))-sum(VspSq2(pv(:,1)),2);
|
||||
end
|
||||
tDiffx=[diffP(idxNonSw);diffVQ(idxNonSw);diffF(freqKeptTagxRef==1)];
|
||||
if max(abs(tDiffx))<diffTol
|
||||
QTemp=imag(diff);
|
||||
break;
|
||||
end
|
||||
dCtemp=sparse(1:nbus,1:nbus,Ctemp,nbus,nbus);
|
||||
dDtemp=sparse(1:nbus,1:nbus,Dtemp,nbus,nbus);
|
||||
Jac1=[dCtemp*J1+dDtemp*J3,dCtemp*J2+dDtemp*J4;...
|
||||
dCtemp*J3-dDtemp*J1,dCtemp*J4-dDtemp*J2];
|
||||
Jac2=[sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus),sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus),-sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus)];
|
||||
Jac3=[sparse(1:nbus,1:nbus,JNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,JNew.*Dtemp./Atemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,KNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,KNew.*Dtemp./Atemp,nbus,nbus)];
|
||||
Jac4=[sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus),sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus);...
|
||||
sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus),-sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus)];
|
||||
Jac=Jac3+Jac4-Jac1-Jac2;
|
||||
|
||||
JacVc=sparse(1:nbus,1:nbus,2*Ctemp,nbus,nbus);
|
||||
JacVd=sparse(1:nbus,1:nbus,2*Dtemp,nbus,nbus);
|
||||
|
||||
Jac(nbus+ipv,:)=[JacVc(ipv,:),JacVd(ipv,:)];
|
||||
|
||||
JacExt=[Jac,[P2freq;sparse(nbus,nbus)];...
|
||||
sparse(nbus,2*nbus),Freq2freq];
|
||||
|
||||
corr=-JacExt(jacRowTag==1,jacColTag==1)\tDiff*stepRatio;
|
||||
corrFull=zeros(3*nbus,1);
|
||||
corrFull(jacColTag==1)=corr;
|
||||
|
||||
Vtemp=VtempOrig;
|
||||
ftemp=ftempOrig;
|
||||
QTemp=QTempOrig;
|
||||
|
||||
Vtemp=Vtemp+corrFull(1:nbus)+1j*corrFull((nbus+1):(2*nbus));
|
||||
ftemp=ftemp+corrFull((2*nbus+1):(3*nbus));
|
||||
QTemp=imag(diff);
|
||||
end
|
||||
elseif AEmethod==3 % NRM -
|
||||
for loop=1:maxLoop
|
||||
Ctemp=real(Vtemp);
|
||||
Dtemp=imag(Vtemp);
|
||||
Atemp=abs(Vtemp);
|
||||
Vgtemp=Vtemp(syn(:,1));
|
||||
Ig=accumarray(syn(:,1),MatGRhsNew(:,1)+1j*MatGRhsNew(:,2),[nbus,1])-...
|
||||
accumarray(syn(:,1),(MatGVNew(:,1).*real(Vgtemp)+MatGVNew(:,2).*imag(Vgtemp))+1j*(MatGVNew(:,3).*real(Vgtemp)+MatGVNew(:,4).*imag(Vgtemp)),[nbus,1]);
|
||||
diff=conj(SNew)+INew.*abs(Vtemp)+Ig.*conj(Vtemp)-(YNew*Vtemp).*conj(Vtemp);
|
||||
diffP=real(diff)+freqKeptTag.*(-fdk.*ftemp+dpg0);
|
||||
diffVQ=imag(diff);
|
||||
diffF=ftemp-ftemp(frefs(islands));
|
||||
if ~isempty(pv)
|
||||
diffVQ(pv(:,1))=abs(Vtemp(pv(:,1))).*abs(Vtemp(pv(:,1)))-sum(VspSq2(pv(:,1)),2);
|
||||
end
|
||||
tDiff=[diffP(idxNonSw);diffVQ(idxNonSw);diffF(freqKeptTagxRef==1)];
|
||||
lambda=1e-3*norm(tDiff)^2;
|
||||
if max(abs(tDiff))<diffTol
|
||||
QTemp=imag(diff);
|
||||
break;
|
||||
end
|
||||
dCtemp=sparse(1:nbus,1:nbus,Ctemp,nbus,nbus);
|
||||
dDtemp=sparse(1:nbus,1:nbus,Dtemp,nbus,nbus);
|
||||
Jac1=[dCtemp*J1+dDtemp*J3,dCtemp*J2+dDtemp*J4;...
|
||||
dCtemp*J3-dDtemp*J1,dCtemp*J4-dDtemp*J2];
|
||||
Jac2=[sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus),sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus),-sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus)];
|
||||
Jac3=[sparse(1:nbus,1:nbus,JNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,JNew.*Dtemp./Atemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,KNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,KNew.*Dtemp./Atemp,nbus,nbus)];
|
||||
Jac4=[sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus),sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus);...
|
||||
sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus),-sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus)];
|
||||
Jac=Jac3+Jac4-Jac1-Jac2;
|
||||
|
||||
JacVc=sparse(1:nbus,1:nbus,2*Ctemp,nbus,nbus);
|
||||
JacVd=sparse(1:nbus,1:nbus,2*Dtemp,nbus,nbus);
|
||||
|
||||
Jac(nbus+ipv,:)=[JacVc(ipv,:),JacVd(ipv,:)];
|
||||
|
||||
JacExt=[Jac,[P2freq;sparse(nbus,nbus)];...
|
||||
sparse(nbus,2*nbus),Freq2freq];
|
||||
|
||||
filteredJac=JacExt(jacRowTag==1,jacColTag==1);
|
||||
corr=-(filteredJac'*filteredJac+lambda*speye(size(filteredJac)))\(filteredJac'*tDiff)*stepRatio;
|
||||
corrFull=zeros(3*nbus,1);
|
||||
corrFull(jacColTag==1)=corr;
|
||||
Vtemp=Vtemp+corrFull(1:nbus)+1j*corrFull((nbus+1):(2*nbus));
|
||||
ftemp=ftemp+corrFull((2*nbus+1):(3*nbus));
|
||||
QTemp=imag(diff);
|
||||
% QTemp(idxNonSw)
|
||||
end
|
||||
elseif AEmethod==4 % NRMJ -
|
||||
for loop=1:maxLoop
|
||||
VtempOrig=Vtemp;
|
||||
ftempOrig=ftemp;
|
||||
QTempOrig=QTemp;
|
||||
% 1st step
|
||||
Ctemp=real(Vtemp);
|
||||
Dtemp=imag(Vtemp);
|
||||
Atemp=abs(Vtemp);
|
||||
Vgtemp=Vtemp(syn(:,1));
|
||||
Ig=accumarray(syn(:,1),MatGRhsNew(:,1)+1j*MatGRhsNew(:,2),[nbus,1])-...
|
||||
accumarray(syn(:,1),(MatGVNew(:,1).*real(Vgtemp)+MatGVNew(:,2).*imag(Vgtemp))+1j*(MatGVNew(:,3).*real(Vgtemp)+MatGVNew(:,4).*imag(Vgtemp)),[nbus,1]);
|
||||
diff=conj(SNew)+INew.*abs(Vtemp)+Ig.*conj(Vtemp)-(YNew*Vtemp).*conj(Vtemp);
|
||||
diffP=real(diff)+freqKeptTag.*(-fdk.*ftemp+dpg0);
|
||||
diffVQ=imag(diff);
|
||||
diffF=ftemp-ftemp(frefs(islands));
|
||||
if ~isempty(pv)
|
||||
diffVQ(pv(:,1))=abs(Vtemp(pv(:,1))).*abs(Vtemp(pv(:,1)))-sum(VspSq2(pv(:,1)),2);
|
||||
end
|
||||
tDiff=[diffP(idxNonSw);diffVQ(idxNonSw);diffF(freqKeptTagxRef==1)];
|
||||
lambda=1e-3*norm(tDiff)^2;
|
||||
if max(abs(tDiff))<diffTol
|
||||
QTemp=imag(diff);
|
||||
break;
|
||||
end
|
||||
dCtemp=sparse(1:nbus,1:nbus,Ctemp,nbus,nbus);
|
||||
dDtemp=sparse(1:nbus,1:nbus,Dtemp,nbus,nbus);
|
||||
Jac1=[dCtemp*J1+dDtemp*J3,dCtemp*J2+dDtemp*J4;...
|
||||
dCtemp*J3-dDtemp*J1,dCtemp*J4-dDtemp*J2];
|
||||
Jac2=[sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus),sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus),-sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus)];
|
||||
Jac3=[sparse(1:nbus,1:nbus,JNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,JNew.*Dtemp./Atemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,KNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,KNew.*Dtemp./Atemp,nbus,nbus)];
|
||||
Jac4=[sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus),sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus);...
|
||||
sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus),-sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus)];
|
||||
Jac=Jac3+Jac4-Jac1-Jac2;
|
||||
|
||||
JacVc=sparse(1:nbus,1:nbus,2*Ctemp,nbus,nbus);
|
||||
JacVd=sparse(1:nbus,1:nbus,2*Dtemp,nbus,nbus);
|
||||
|
||||
Jac(nbus+ipv,:)=[JacVc(ipv,:),JacVd(ipv,:)];
|
||||
|
||||
JacExt=[Jac,[P2freq;sparse(nbus,nbus)];...
|
||||
sparse(nbus,2*nbus),Freq2freq];
|
||||
|
||||
filteredJac=JacExt(jacRowTag==1,jacColTag==1);
|
||||
corr=-(filteredJac'*filteredJac+lambda*speye(size(filteredJac)))\(filteredJac'*tDiff)*0.5*stepRatio;
|
||||
corrFull=zeros(3*nbus,1);
|
||||
corrFull(jacColTag==1)=corr;
|
||||
Vtemp=Vtemp+corrFull(1:nbus)+1j*corrFull((nbus+1):(2*nbus));
|
||||
ftemp=ftemp+corrFull((2*nbus+1):(3*nbus));
|
||||
QTemp=imag(diff);
|
||||
% 2nd step
|
||||
Ctemp=real(Vtemp);
|
||||
Dtemp=imag(Vtemp);
|
||||
Atemp=abs(Vtemp);
|
||||
Vgtemp=Vtemp(syn(:,1));
|
||||
Ig=accumarray(syn(:,1),MatGRhsNew(:,1)+1j*MatGRhsNew(:,2),[nbus,1])-...
|
||||
accumarray(syn(:,1),(MatGVNew(:,1).*real(Vgtemp)+MatGVNew(:,2).*imag(Vgtemp))+1j*(MatGVNew(:,3).*real(Vgtemp)+MatGVNew(:,4).*imag(Vgtemp)),[nbus,1]);
|
||||
diff=conj(SNew)+INew.*abs(Vtemp)+Ig.*conj(Vtemp)-(YNew*Vtemp).*conj(Vtemp);
|
||||
diffP=real(diff)+freqKeptTag.*(-fdk.*ftemp+dpg0);
|
||||
diffVQ=imag(diff);
|
||||
diffF=ftemp-ftemp(frefs(islands));
|
||||
if ~isempty(pv)
|
||||
diffVQ(pv(:,1))=abs(Vtemp(pv(:,1))).*abs(Vtemp(pv(:,1)))-sum(VspSq2(pv(:,1)),2);
|
||||
end
|
||||
tDiffx=[diffP(idxNonSw);diffVQ(idxNonSw);diffF(freqKeptTagxRef==1)];
|
||||
lambdax=1e-3*norm(tDiffx)^2;
|
||||
if max(abs(tDiffx))<diffTol
|
||||
QTemp=imag(diff);
|
||||
break;
|
||||
end
|
||||
dCtemp=sparse(1:nbus,1:nbus,Ctemp,nbus,nbus);
|
||||
dDtemp=sparse(1:nbus,1:nbus,Dtemp,nbus,nbus);
|
||||
Jac1=[dCtemp*J1+dDtemp*J3,dCtemp*J2+dDtemp*J4;...
|
||||
dCtemp*J3-dDtemp*J1,dCtemp*J4-dDtemp*J2];
|
||||
Jac2=[sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus),sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,J3*Ctemp+J4*Dtemp,nbus,nbus),-sparse(1:nbus,1:nbus,J1*Ctemp+J2*Dtemp,nbus,nbus)];
|
||||
Jac3=[sparse(1:nbus,1:nbus,JNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,JNew.*Dtemp./Atemp,nbus,nbus);...
|
||||
sparse(1:nbus,1:nbus,KNew.*Ctemp./Atemp,nbus,nbus),sparse(1:nbus,1:nbus,KNew.*Dtemp./Atemp,nbus,nbus)];
|
||||
Jac4=[sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus),sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus);...
|
||||
sparse(syn(:,1),syn(:,1),MatGRhsNew(:,2),nbus,nbus),-sparse(syn(:,1),syn(:,1),MatGRhsNew(:,1),nbus,nbus)];
|
||||
Jac=Jac3+Jac4-Jac1-Jac2;
|
||||
|
||||
JacVc=sparse(1:nbus,1:nbus,2*Ctemp,nbus,nbus);
|
||||
JacVd=sparse(1:nbus,1:nbus,2*Dtemp,nbus,nbus);
|
||||
|
||||
Jac(nbus+ipv,:)=[JacVc(ipv,:),JacVd(ipv,:)];
|
||||
|
||||
JacExt=[Jac,[P2freq;sparse(nbus,nbus)];...
|
||||
sparse(nbus,2*nbus),Freq2freq];
|
||||
|
||||
filteredJac=JacExt(jacRowTag==1,jacColTag==1);
|
||||
corr=-(filteredJac'*filteredJac+lambda*speye(size(filteredJac)))\(filteredJac'*tDiff)*stepRatio;
|
||||
corrFull=zeros(3*nbus,1);
|
||||
corrFull(jacColTag==1)=corr;
|
||||
|
||||
Vtemp=VtempOrig;
|
||||
ftemp=ftempOrig;
|
||||
QTemp=QTempOrig;
|
||||
|
||||
Vtemp=Vtemp+corrFull(1:nbus)+1j*corrFull((nbus+1):(2*nbus));
|
||||
ftemp=ftemp+corrFull((2*nbus+1):(3*nbus));
|
||||
QTemp=imag(diff);
|
||||
end
|
||||
end
|
||||
|
||||
if loop>=maxLoop&&max(abs(tDiff))>=diffTol
|
||||
flag=-1;
|
||||
else
|
||||
flag=0;
|
||||
end
|
||||
|
||||
diffRec=max(abs(tDiff));
|
||||
|
||||
stateNew=xNew;
|
||||
stateNew(idxs.vIdx)=Vtemp;
|
||||
stateNew(idxs.qIdx)=QTemp;
|
||||
stateNew(idxs.fIdx)=ftemp;
|
||||
|
||||
addLog(['[#END#] Solving algebraic equations - NR finished. Exitflag = ',num2str(flag), ', loop = ',num2str(loop),'.'],'INFO');
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user