You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1228 lines
56 KiB
1228 lines
56 KiB
function [V,Q,s,d,w,eq1,eq2,ed1,ed2,psid,psiq,Pm,Ef,Vavrm,Vavrr,Vavrf,Vavrref,tgovg,tgovm,Tmech,f,dpg,qplt,vg]=...
|
|
hemMachinePFSalientcontinueDyn(SimData,SysData,SysPara,x0)
|
|
% Core HE algorithm for solving DAEs (dynamic simulation)
|
|
%
|
|
% FUNCTION hemMachinePFSalientcontinueDyn
|
|
%
|
|
% Author: Rui Yao <ruiyao@ieee.org>
|
|
%
|
|
% Copyright (C) 2021, UChicago Argonne, LLC. All rights reserved.
|
|
%
|
|
% OPEN SOURCE LICENSE
|
|
%
|
|
% Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
|
%
|
|
% 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
|
% 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
|
% 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
|
|
%
|
|
%
|
|
% ******************************************************************************************************
|
|
% DISCLAIMER
|
|
%
|
|
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
% WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
% PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
% OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
% ***************************************************************************************************
|
|
%
|
|
% INPUT
|
|
% SimData - Simulation parameters
|
|
% SysData - System data for simulation
|
|
% SysPara - Parameters representing the events happening in the system
|
|
% x0 - Initial system state
|
|
%
|
|
% OUTPUT - (will be consolidated in a future version)
|
|
%
|
|
% TODO % Modify the output arguments
|
|
%
|
|
|
|
global IS_OCTAVE;
|
|
|
|
|
|
|
|
% import system data khuang, 8 Jul
|
|
[bus,sw,pv,pq,shunt,line,ind,zip,syn,exc,tg,agc,cac,cluster]=unfoldSysData(SysData);
|
|
% nbus:Total number of buses khuang, 8 Jul
|
|
nbus=size(bus,1);
|
|
nline=size(line,1);
|
|
|
|
%determine islanding, this is for AGC part khuang 8 JUl
|
|
if isfield(SysPara,'nIslands')&&isfield(SysPara,'islands')&&isfield(SysPara,'refs')
|
|
nIslands=SysPara.nIslands;islands=SysPara.islands;refs=SysPara.refs;
|
|
else
|
|
[nIslands,islands,refs]=searchIslands(bus(:,1),line(:,1:2));
|
|
end
|
|
|
|
% improt initial condition of state variables khuang 8 JUl
|
|
[V0,Q0,s0,d0,w0,eq10,eq20,ed10,ed20,psid0,psiq0,Pm0,Ef0,Vavrm0,Vavrr0,Vavrf0,Vavrref0,tgovg0,tgovm0,tgovmech0,f0,dpg0,qplt0,vg0]=unfoldX(x0,SysData);
|
|
% import simualtion data khuang 8 JUl
|
|
[~,~,~,nlvl,taylorN,~,~,~,~]=unfoldSimData(SimData);
|
|
% import system parameters khuang 8 JUl
|
|
[pqIncr,pvIncr,Rind0,Rind1,Reind0,Reind1,Rzip0,Rzip1,Ytr0,Ytr1,Ysh0,Ysh1,VspSq2,~,~,~,~,Tmech1,Varref1,Ef1,Pm1,Eq11]=unfoldSysPara(SysPara);
|
|
%
|
|
|
|
% PQ incremental is given for every pq bus.
|
|
% need to figure how to utilize them, now i suppose this part is for CPF
|
|
% problem khuang 8 JUL
|
|
Pls=zeros(nbus,2);Pls(pq(:,1),1)=pqIncr(:,1);if ~isempty(pv);Pls(pv(:,1),1)=Pls(pv(:,1),1)-pvIncr;end
|
|
Qls=zeros(nbus,2);Qls(pq(:,1),1)=pqIncr(:,2);
|
|
if size(pqIncr,2)>=4
|
|
Pls(pq(:,1),2)=pqIncr(:,3);
|
|
Qls(pq(:,1),2)=pqIncr(:,4);
|
|
end
|
|
|
|
% formatting Ymatrix, here the default value of fault is empty, khuang 8 JUL
|
|
if isempty(Ytr0)
|
|
[Y,Ytr0,Ysh,ytrfr,ytrto,yshfr,yshto]=getYMatrix(nbus,line);
|
|
end
|
|
|
|
|
|
% reshape the pv, pq shunt and swing buses as zeros if they are empty
|
|
% khuang 8JUL
|
|
busType=zeros(nbus,1);
|
|
if isempty(pv)
|
|
pv=zeros(0,6);
|
|
end
|
|
if isempty(pq)
|
|
pq=zeros(0,6);
|
|
end
|
|
if isempty(shunt)
|
|
shunt=zeros(0,7);
|
|
end
|
|
if isempty(sw)
|
|
sw=zeros(0,13);
|
|
end
|
|
|
|
% label pv and swing buses khuang 8 JUL
|
|
% 1: PV bus, 0: PQ bus
|
|
busType(pv(:,1))=1;
|
|
busType(sw(:,1))=2;
|
|
% zip(busType(zip(:,1))~=0,10)=0;
|
|
|
|
% index of slack bus (isw), pv bus(ipv), and pq bus(ipq)
|
|
% is given: isw, ipv, and ipq khuang 8 JUL
|
|
% Additionally, number of pv and pq buses are given:
|
|
%npv, npq respectively khuang 8 JUL
|
|
isw=find(busType==2);
|
|
ipv=find(busType==1);
|
|
ipq=find(busType==0);
|
|
npq=size(ipq,1);
|
|
npv=size(ipv,1);
|
|
|
|
% shunt capacitator is initialized as yShunt which is a complex number.
|
|
% for every bus khuang 8 JUL
|
|
yShunt=zeros(nbus,1);
|
|
yShunt(shunt(:,1))=shunt(:,5)+1j*shunt(:,6);
|
|
|
|
% check if zip load exists in the system
|
|
% and initialized zip load khuang 8 JUL
|
|
if ~isempty(zip)%zipMode=0
|
|
Ysh0=Ysh0+accumarray(zip(:,1),Rzip0.*(zip(:,5)+1j*zip(:,8)).*zip(:,12),[nbus,1]);
|
|
Ysh1=Ysh1+accumarray(zip(:,1),Rzip1.*(zip(:,5)+1j*zip(:,8)).*zip(:,12),[nbus,1]);
|
|
end
|
|
|
|
% now zip load + shunt khuang 8 JUL
|
|
Ysh0=Ysh0+yShunt;
|
|
% Y=Y+sparse(1:nbus,1:nbus,yShunt,nbus,nbus);
|
|
|
|
% now zip load + shunt+ network Y matrix khuang 8 JUL
|
|
Y=Ytr0+sparse(1:nbus,1:nbus,Ysh0,nbus,nbus);
|
|
|
|
%initialize P and Q for every bus khuang 8 JUL
|
|
pVec=zeros(nbus,1);
|
|
qVec=zeros(nbus,1);
|
|
% vSp=zeros(nbus,1);
|
|
|
|
% need to figure out the meaning of index 1, 4,5
|
|
% based on Kaiyang's understanding, 1 is load side and 4&5 are generators'
|
|
% output khuang 8 JUL
|
|
pVec(pv(:,1))=pVec(pv(:,1))+pv(:,4);
|
|
pVec(pq(:,1))=pVec(pq(:,1))-pq(:,4);
|
|
qVec(pq(:,1))=qVec(pq(:,1))-pq(:,5);
|
|
% account the zip load, i.e dynamic load khuang 8 JUL
|
|
if ~isempty(zip)%zipMode=0, account for the PQ components in ZIP loads
|
|
pVec=pVec-accumarray(zip(:,1),Rzip0.*zip(:,7).*zip(:,12),[nbus,1]);
|
|
qVec=qVec-accumarray(zip(:,1),Rzip0.*zip(:,10).*zip(:,12),[nbus,1]);
|
|
end
|
|
% qVec(ipv)=qVec(ipv)+Q0(ipv);
|
|
% vSp(ipv)=pv(:,5);
|
|
|
|
% so far, initialization of PQ for every bus and Y matrix is ready khuang 8 JUL
|
|
|
|
|
|
% initiliza voltage V and W = 1/V for every bus khuang 8 JUL
|
|
V=zeros(nbus,nlvl+1);
|
|
V(:,1)=V0;
|
|
W=zeros(nbus,nlvl+1);
|
|
W(:,1)=1./V0;
|
|
|
|
|
|
% initiliza magnitude of voltage V for every bus khuang 8 JUL
|
|
Vmag=zeros(nbus,nlvl+1);
|
|
Vmag(:,1)=abs(V0);
|
|
|
|
% Power is initilized as we already cooked pVec and qVec khuang 8 JUL
|
|
P=zeros(nbus,nlvl+1);
|
|
P(:,1)=pVec;
|
|
% P(isw,2:end)=0;
|
|
% here we need to figure out what Q extra mean, and difference from Q
|
|
% notice that Q0 is initialized with sysmdata but not P0 khuang 8 JUL
|
|
Q=zeros(nbus,nlvl+1);
|
|
Qxtra=zeros(size(Q));
|
|
Q(:,1)=Q0;
|
|
Qxtra(:,1)=qVec;
|
|
|
|
% Also, the meaning of Pls and Qls need to be verified, i assume they are
|
|
% for CPF khuang 8 JUL
|
|
P(:,2:(size(Pls,2)+1))=-Pls;
|
|
Qxtra(:,2:(size(Qls,2)+1))=-Qls;
|
|
|
|
|
|
% In the previous, pVec and qvec are considered zip load, here Pls and Qls
|
|
% are not, so we need to do it.khuang 8 JUL
|
|
if ~isempty(zip)
|
|
P(:,2)=P(:,2)-accumarray(zip(:,1),Rzip1.*zip(:,7).*zip(:,12),[nbus,1]);
|
|
Qxtra(:,2)=Qxtra(:,2)-accumarray(zip(:,1),Rzip1.*zip(:,10).*zip(:,12),[nbus,1]);
|
|
end
|
|
% Qxtra(busType~=0,2:end)=Q(busType~=0,2:end);
|
|
% Q(busType~=0,2:end)=0;
|
|
|
|
|
|
% seperate real and image part of voltages and their inverse khuang 8 JUL
|
|
% here V = C+1i*D khuang 8 JUL
|
|
% and W = 1./V = E + 1i*F khuang 8 JUL
|
|
C0=real(V(:,1));
|
|
D0=imag(V(:,1));
|
|
E0=real(W(:,1));
|
|
F0=imag(W(:,1));
|
|
|
|
% Construct sparse matrix individually for C,D,E,F,P,Q. khuang 8 JUL
|
|
% Notice that Q = Q(:,1)+Qxtra(:,1) which is different from P. khuang 8 JUL
|
|
C0M=sparse(1:nbus,1:nbus,C0,nbus,nbus);
|
|
D0M=sparse(1:nbus,1:nbus,D0,nbus,nbus);
|
|
E0M=sparse(1:nbus,1:nbus,E0,nbus,nbus);
|
|
F0M=sparse(1:nbus,1:nbus,F0,nbus,nbus);
|
|
P0M=sparse(1:nbus,1:nbus,P(:,1),nbus,nbus);
|
|
Q0M=sparse(1:nbus,1:nbus,Q(:,1)+Qxtra(:,1),nbus,nbus);
|
|
|
|
% get real part and image part of Y matrix, not sure why do this. khuang 8 JUL
|
|
G=real(Y);
|
|
B=imag(Y);
|
|
% so Y = G + 1i*B. khuang 8 JUL
|
|
|
|
% this part is for AGC khuang 8 JUL
|
|
%--------------------------------------------------------------
|
|
% Determine the frequency model of each island
|
|
% 0:sw,1:syn,2:steady-state f
|
|
freqTypeTag=zeros(nIslands,1);%0:sw,1:syn,2:steady-state f
|
|
freqKeptTag=zeros(nbus,1);
|
|
frefs=refs;
|
|
fswTag=zeros(nbus,1);
|
|
fsynTag=zeros(nbus,1);
|
|
fswTag(isw)=1;
|
|
fswTagxD=fswTag;
|
|
fsynTag(syn(:,1))=1;
|
|
for isl=1:nIslands
|
|
if isempty(find(fswTag(islands==isl)==1, 1))
|
|
if isempty(find(fsynTag(islands==isl)==1, 1))
|
|
freqTypeTag(isl)=2;
|
|
busesInIsland=find(islands==isl);
|
|
[~,imin]=min(abs(D0(busesInIsland)));
|
|
frefs(isl)=busesInIsland(imin(1));
|
|
fswTagxD(frefs(isl))=1;
|
|
freqKeptTag(busesInIsland)=1;
|
|
else
|
|
freqTypeTag(isl)=1;
|
|
end
|
|
end
|
|
end
|
|
freqKeptTagxRef=freqKeptTag;
|
|
freqKeptTagxRef(frefs)=0;
|
|
nFreqKept=sum(freqKeptTag);
|
|
%-----------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
%------------------------------------------------------------------
|
|
% this part is for initialling inductor. khuang 8 JUL
|
|
if ~isempty(ind) % check if there is any inductor% khuang 8 JUL
|
|
nInd=size(ind,1); % determine the number of inductors % khuang 8 JUL
|
|
indIdx=ind(:,1); % store the index of inductors among all buses% khuang 8 JUL
|
|
|
|
s=zeros(nInd,nlvl+1); % slip% khuang 8 JUL
|
|
s(:,1)=s0; % initialize slip% khuang 8 JUL
|
|
IL=zeros(nInd,nlvl+1); % |
|
|
IR=zeros(nInd,nlvl+1); % |
|
|
Vm=zeros(nInd,nlvl+1); % initialization finished 0 value% khuang 8 JUL
|
|
|
|
|
|
%-----------------parameters of inductors---------% khuang 8 JUL
|
|
%-----------------START----------------% khuang 8 JUL
|
|
R1=ind(:,7);
|
|
X1=ind(:,8);
|
|
Z1=ind(:,7)+1j*ind(:,8);
|
|
Ze=1j*ind(:,13);
|
|
R2=ind(:,9);
|
|
X2=ind(:,10);
|
|
T0=ind(:,15)+ind(:,16)+ind(:,17);
|
|
T1=-ind(:,16)-2*ind(:,17);
|
|
T2=ind(:,17);
|
|
Hm=ind(:,14);
|
|
%-----------------parameters of inductors---------% khuang 8 JUL
|
|
%-----------------END----------------% khuang 8 JUL
|
|
|
|
|
|
Rm=zeros(nInd,1);
|
|
|
|
Am=sparse(indIdx,(1:nInd)',ones(1,nInd),nbus,nInd);
|
|
|
|
% first order value of induction motor IL,VM,IR % khuang 8 JUL
|
|
IL(:,1)=V0(indIdx)./(Z1+Ze.*(R2+1j*X2.*s0)./(R2.*Reind0+(1j*X2.*Reind0+Ze).*s0));
|
|
Vm(:,1)=V0(indIdx)-IL(:,1).*Z1;
|
|
IR(:,1)=Vm(:,1).*s0./(R2+1j*X2.*s0);
|
|
|
|
J0=real(IR(:,1));
|
|
K0=imag(IR(:,1));
|
|
JL0=real(IL(:,1));
|
|
KL0=imag(IL(:,1));
|
|
|
|
% prepare the algebric matrix % khuang 8 JUL
|
|
Yeind0=Reind0./Ze;
|
|
Yeind1=Reind1./Ze;
|
|
Ye1ind0=Reind0.*Z1./Ze;
|
|
Ye1ind1=Reind1.*Z1./Ze;
|
|
Ge=real(Yeind0);
|
|
Be=imag(Yeind0);
|
|
kg1e=real(Ye1ind0);
|
|
kb1e=imag(Ye1ind0);
|
|
Ge1=real(Yeind1);
|
|
Be1=imag(Yeind1);
|
|
kg1e1=real(Ye1ind1);
|
|
kb1e1=imag(Ye1ind1);
|
|
|
|
% LHS_MatInd_Shr_sqz=zeros(nInd,4);
|
|
% RHS_C_Shr_sqz=zeros(nInd,8);
|
|
% LHS_MatInd_Shr2_sqz=zeros(nInd,8);
|
|
%
|
|
% LHS_MatInd_Shr=zeros(nInd,2,2);
|
|
% RHS_C_Shr=cell(nInd,1);
|
|
% LHS_MatInd_Shr2=cell(nInd,1); % A^-1B
|
|
% LHS_MatInd_Shr3=cell(nInd,1); % A^-1
|
|
%
|
|
% for i=1:nInd
|
|
% LHS_MatInd=[R2(i),-X2(i)*s0(i),R1(i)*s0(i),-X1(i)*s0(i),-s0(i),0;...
|
|
% X2(i)*s0(i), R2(i),X1(i)*s0(i), R1(i)*s0(i),0,-s0(i);...
|
|
% -1,0,1+kg1e(i),-kb1e(i),-Ge(i), Be(i);...
|
|
% 0,-1,kb1e(i), 1+kg1e(i),-Be(i),-Ge(i);];
|
|
% temp0=LHS_MatInd([3,4],[1,2])\eye(2); % A^-1
|
|
% LHS_MatInd_Shr2{i}=temp0*LHS_MatInd([3,4],[3,4,5,6]); % A^-1B
|
|
% LHS_MatInd_Shr3{i}=temp0; % A^-1
|
|
% temp1=LHS_MatInd([1,2],[1,2])/LHS_MatInd([3,4],[1,2]); % CA^-1
|
|
% temp2=LHS_MatInd([1,2],[3,4,5,6])-temp1*LHS_MatInd([3,4],[3,4,5,6]); % L=D-CA^-1B
|
|
% LHS_MatInd_Shr(i,:,:)=-temp2(:,[1,2])\temp2(:,[3,4]); % -R\S
|
|
% RHS_C_Shr{i}=temp2(:,[1,2])\[eye(2),-temp1]; % R\[I,-CA^-1]
|
|
%
|
|
% LHS_MatInd_Shr_sqz(i,:)=reshape(LHS_MatInd_Shr(i,:,:),[1,4]);
|
|
% RHS_C_Shr_sqz(i,:)=reshape(RHS_C_Shr{i},[1,8]);
|
|
% LHS_MatInd_Shr2_sqz(i,:)=reshape(LHS_MatInd_Shr2{i},[1,8]);
|
|
% end
|
|
% LHS_MatInd_Bus=zeros(nbus,2,2); % \sum{-R\S} by buses
|
|
% LHS_MatInd_Bus(:,1,1)=accumarray(indIdx,LHS_MatInd_Shr(:,1,1),[nbus,1]);
|
|
% LHS_MatInd_Bus(:,1,2)=accumarray(indIdx,LHS_MatInd_Shr(:,1,2),[nbus,1]);
|
|
% LHS_MatInd_Bus(:,2,1)=accumarray(indIdx,LHS_MatInd_Shr(:,2,1),[nbus,1]);
|
|
% LHS_MatInd_Bus(:,2,2)=accumarray(indIdx,LHS_MatInd_Shr(:,2,2),[nbus,1]);
|
|
|
|
MInd0=zeros(nInd,1);
|
|
MInd1=ones(nInd,1);
|
|
LHS_MatInd_sqz=[R2,X2.*s0,-MInd1,MInd0,...
|
|
-X2.*s0,R2,MInd0,-MInd1,...
|
|
R1.*s0,X1.*s0,MInd1+kg1e,kb1e,...
|
|
-X1.*s0,R1.*s0,-kb1e,MInd1+kg1e,...
|
|
-s0,MInd0,-Ge,-Be,...
|
|
MInd0,-s0,Be,-Ge]; % 4*6 matrix [C,D;A,B]
|
|
LHS_MatInd_idx=reshape((1:24)',[4,6]);
|
|
temp0inv_sqz=LHS_MatInd_sqz(:,reshape(LHS_MatInd_idx([3,4],[1,2]),1,[]));
|
|
temp0inv_sqz_det=temp0inv_sqz(:,1).*temp0inv_sqz(:,4)-temp0inv_sqz(:,2).*temp0inv_sqz(:,3);
|
|
temp0_sqz=[temp0inv_sqz(:,4),-temp0inv_sqz(:,2),-temp0inv_sqz(:,3),temp0inv_sqz(:,1)]./repmat(temp0inv_sqz_det,[1,4]);% A^-1
|
|
indB_sqz=LHS_MatInd_sqz(:,reshape(LHS_MatInd_idx([3,4],[3,4,5,6]),1,[]));
|
|
LHS_MatInd_Shr2_sqz=[temp0_sqz(:,1).*indB_sqz(:,1)+temp0_sqz(:,3).*indB_sqz(:,2),temp0_sqz(:,2).*indB_sqz(:,1)+temp0_sqz(:,4).*indB_sqz(:,2),...
|
|
temp0_sqz(:,1).*indB_sqz(:,3)+temp0_sqz(:,3).*indB_sqz(:,4),temp0_sqz(:,2).*indB_sqz(:,3)+temp0_sqz(:,4).*indB_sqz(:,4),...
|
|
temp0_sqz(:,1).*indB_sqz(:,5)+temp0_sqz(:,3).*indB_sqz(:,6),temp0_sqz(:,2).*indB_sqz(:,5)+temp0_sqz(:,4).*indB_sqz(:,6),...
|
|
temp0_sqz(:,1).*indB_sqz(:,7)+temp0_sqz(:,3).*indB_sqz(:,8),temp0_sqz(:,2).*indB_sqz(:,7)+temp0_sqz(:,4).*indB_sqz(:,8)];% A^-1B
|
|
indC_sqz=LHS_MatInd_sqz(:,reshape(LHS_MatInd_idx([1,2],[1,2]),1,[]));
|
|
temp1_sqz=[indC_sqz(:,1).*temp0_sqz(:,1)+indC_sqz(:,3).*temp0_sqz(:,2),indC_sqz(:,2).*temp0_sqz(:,1)+indC_sqz(:,4).*temp0_sqz(:,2),...
|
|
indC_sqz(:,1).*temp0_sqz(:,3)+indC_sqz(:,3).*temp0_sqz(:,4),indC_sqz(:,2).*temp0_sqz(:,3)+indC_sqz(:,4).*temp0_sqz(:,4)];% CA^-1
|
|
temp2_sqz=LHS_MatInd_sqz(:,reshape(LHS_MatInd_idx([1,2],[3,4,5,6]),1,[]))-...
|
|
[temp1_sqz(:,1).*indB_sqz(:,1)+temp1_sqz(:,3).*indB_sqz(:,2),temp1_sqz(:,2).*indB_sqz(:,1)+temp1_sqz(:,4).*indB_sqz(:,2),...
|
|
temp1_sqz(:,1).*indB_sqz(:,3)+temp1_sqz(:,3).*indB_sqz(:,4),temp1_sqz(:,2).*indB_sqz(:,3)+temp1_sqz(:,4).*indB_sqz(:,4),...
|
|
temp1_sqz(:,1).*indB_sqz(:,5)+temp1_sqz(:,3).*indB_sqz(:,6),temp1_sqz(:,2).*indB_sqz(:,5)+temp1_sqz(:,4).*indB_sqz(:,6),...
|
|
temp1_sqz(:,1).*indB_sqz(:,7)+temp1_sqz(:,3).*indB_sqz(:,8),temp1_sqz(:,2).*indB_sqz(:,7)+temp1_sqz(:,4).*indB_sqz(:,8)];% L=D-CA^-1B=[R,S]
|
|
temp2_c12_sqz=temp2_sqz(:,1:4);
|
|
temp2_c34_sqz=temp2_sqz(:,5:8);
|
|
temp2_c12_sqz_det=temp2_c12_sqz(:,1).*temp2_c12_sqz(:,4)-temp2_c12_sqz(:,2).*temp2_c12_sqz(:,3);
|
|
temp2_c12_inv_sqz=[temp2_c12_sqz(:,4),-temp2_c12_sqz(:,2),-temp2_c12_sqz(:,3),temp2_c12_sqz(:,1)]./repmat(temp2_c12_sqz_det,[1,4]);
|
|
LHS_MatInd_Shr_sqz=-[temp2_c12_inv_sqz(:,1).*temp2_c34_sqz(:,1)+temp2_c12_inv_sqz(:,3).*temp2_c34_sqz(:,2),temp2_c12_inv_sqz(:,2).*temp2_c34_sqz(:,1)+temp2_c12_inv_sqz(:,4).*temp2_c34_sqz(:,2),...
|
|
temp2_c12_inv_sqz(:,1).*temp2_c34_sqz(:,3)+temp2_c12_inv_sqz(:,3).*temp2_c34_sqz(:,4),temp2_c12_inv_sqz(:,2).*temp2_c34_sqz(:,3)+temp2_c12_inv_sqz(:,4).*temp2_c34_sqz(:,4)];% -R\S
|
|
RHS_C_Shr_sqz=[temp2_c12_inv_sqz,...
|
|
-[temp2_c12_inv_sqz(:,1).*temp1_sqz(:,1)+temp2_c12_inv_sqz(:,3).*temp1_sqz(:,2),temp2_c12_inv_sqz(:,2).*temp1_sqz(:,1)+temp2_c12_inv_sqz(:,4).*temp1_sqz(:,2),...
|
|
temp2_c12_inv_sqz(:,1).*temp1_sqz(:,3)+temp2_c12_inv_sqz(:,3).*temp1_sqz(:,4),temp2_c12_inv_sqz(:,2).*temp1_sqz(:,3)+temp2_c12_inv_sqz(:,4).*temp1_sqz(:,4)]];% R\[I,-CA^-1]
|
|
% will be used to calculate algebric variabls for motors% khuang 8 JUL
|
|
LHS_MatInd_Bus_sqz=zeros(nbus,4); % \sum{-R\S} by buses
|
|
LHS_MatInd_Bus_sqz(:,1)=accumarray(indIdx,LHS_MatInd_Shr_sqz(:,1),[nbus,1]);
|
|
LHS_MatInd_Bus_sqz(:,2)=accumarray(indIdx,LHS_MatInd_Shr_sqz(:,2),[nbus,1]);
|
|
LHS_MatInd_Bus_sqz(:,3)=accumarray(indIdx,LHS_MatInd_Shr_sqz(:,3),[nbus,1]);
|
|
LHS_MatInd_Bus_sqz(:,4)=accumarray(indIdx,LHS_MatInd_Shr_sqz(:,4),[nbus,1]);
|
|
else
|
|
s=zeros(0,nlvl+1);
|
|
end
|
|
% Initialization of inductors is finished % khuang 8 JUL
|
|
%------------------------------------------------------------------
|
|
|
|
|
|
%------------------------------Initialization of ZIP load---------% khuang 8 JUL
|
|
if ~isempty(zip)
|
|
nZip=size(zip,1);
|
|
zipIdx=zip(:,1);
|
|
IiL=zeros(nZip,nlvl+1);
|
|
BiL=zeros(nZip,nlvl+1);
|
|
|
|
% prepare the necessary matrix by blocks% khuang 8 JUL
|
|
Bi0=abs(V0(zipIdx));
|
|
JI=zip(:,6);
|
|
KI=-zip(:,9);
|
|
% current % khuang 8 JUL
|
|
Ii0L=Rzip0.*(JI+1j*KI).*V0(zipIdx)./Bi0;
|
|
Ji0L=real(Ii0L);
|
|
Ki0L=imag(Ii0L);
|
|
|
|
IiL(:,1)=Ii0L;
|
|
BiL(:,1)=Bi0;
|
|
% voltage% khuang 8 JUL
|
|
Ci0=real(V0(zipIdx));
|
|
Di0=imag(V0(zipIdx));
|
|
|
|
LHS_MatZip=[Rzip0.*JI./Bi0-Ci0.*Ji0L./Bi0./Bi0,-Rzip0.*KI./Bi0-Di0.*Ji0L./Bi0./Bi0,...
|
|
Rzip0.*KI./Bi0-Ci0.*Ki0L./Bi0./Bi0,Rzip0.*JI./Bi0-Di0.*Ki0L./Bi0./Bi0];
|
|
Mat_BZip=[Ci0./Bi0,Di0./Bi0];
|
|
else
|
|
IiL=zeros(0,nlvl+1);
|
|
end
|
|
%------------------------------Initialization of ZIP load------------------% khuang 8 JUL
|
|
%------------------------------Initialization of ZIP load is finished---------------- % khuang 8 JUL
|
|
|
|
|
|
%------------------------------Initialization of GEN------------------% khuang 8 JUL
|
|
%------------------------------Start------------------------% khuang 8 JUL
|
|
nSyn=size(syn,1);
|
|
if ~isempty(syn)
|
|
synIdx =syn(:,1);% index number of Generators% khuang 8 JUL
|
|
wgb =syn(:,4);% maybe the base value% khuang 8 JUL
|
|
modSyn =syn(:,5);% the order of generator models% khuang 8 JUL
|
|
Xgl =syn(:,6);
|
|
Rga =syn(:,7);
|
|
Xgd =syn(:,8);
|
|
Xgd1 =syn(:,9);
|
|
Xgd2 =syn(:,10);
|
|
Tgd1 =syn(:,11);
|
|
Tgd2 =syn(:,12);
|
|
Xgq =syn(:,13);
|
|
Xgq1 =syn(:,14);
|
|
Xgq2 =syn(:,15);
|
|
Tgq1 =syn(:,16);
|
|
Tgq2 =syn(:,17);
|
|
Mg =syn(:,18);
|
|
Dg =syn(:,19);
|
|
TgAA =syn(:,24);
|
|
gammad =Tgd2./Tgd1.*Xgd2./Xgd1.*(Xgd-Xgd1);
|
|
gammaq =Tgq2./Tgq1.*Xgq2./Xgq1.*(Xgq-Xgq1);
|
|
|
|
d=zeros(nSyn,nlvl+1); % delta% khuang 8 JUL
|
|
w=zeros(nSyn,nlvl+1); % omega% khuang 8 JUL
|
|
eq1=zeros(nSyn,nlvl+1); %eq'% khuang 8 JUL
|
|
eq2=zeros(nSyn,nlvl+1); %eq''% khuang 8 JUL
|
|
ed1=zeros(nSyn,nlvl+1); %ed'% khuang 8 JUL
|
|
ed2=zeros(nSyn,nlvl+1); %ed''% khuang 8 JUL
|
|
psiq=zeros(nSyn,nlvl+1); % not sure, only in 8th order model% khuang 8 JUL
|
|
psid=zeros(nSyn,nlvl+1); % not sure, only in 8th order model% khuang 8 JUL
|
|
JG=zeros(nSyn,nlvl+1);
|
|
KG=zeros(nSyn,nlvl+1);
|
|
IGq=zeros(nSyn,nlvl+1);
|
|
IGd=zeros(nSyn,nlvl+1);
|
|
VGq=zeros(nSyn,nlvl+1);
|
|
VGd=zeros(nSyn,nlvl+1);
|
|
Cd=zeros(nSyn,nlvl+1);
|
|
Sd=zeros(nSyn,nlvl+1);
|
|
Ef=zeros(nSyn,nlvl+1);
|
|
Pm=zeros(nSyn,nlvl+1);
|
|
|
|
cosd=cos(d0);
|
|
sind=sin(d0);
|
|
CG0=C0(synIdx);
|
|
DG0=D0(synIdx);
|
|
% the first value is given here, notice all are 8th order model% khuang 8 JUL
|
|
d(:,1)=d0;
|
|
w(:,1)=w0;
|
|
eq1(:,1)=eq10;
|
|
eq2(:,1)=eq20;
|
|
ed1(:,1)=ed10;
|
|
ed2(:,1)=ed20;
|
|
psiq(:,1)=psiq0;
|
|
psid(:,1)=psid0;
|
|
|
|
% transform between grid side and dq side% khuang 8 JUL
|
|
|
|
VGd(:,1)=sind.*CG0-cosd.*DG0;
|
|
VGq(:,1)=cosd.*CG0+sind.*DG0;
|
|
% now they are under dq side% khuang 8 JUL
|
|
|
|
Cd(:,1)=cosd; % first order of cos(delta)% khuang 8 JUL
|
|
Sd(:,1)=sind; % first order of sin(delta)% khuang 8 JUL
|
|
Ef(:,1)=Ef0;
|
|
Pm(:,1)=Pm0;
|
|
|
|
%check if controller exists% khuang 8 JUL
|
|
if ~isempty(Ef1)
|
|
Ef(:,2)=Ef1;
|
|
end
|
|
if ~isempty(Eq11)
|
|
eq1(:,2)=Eq11;
|
|
end
|
|
if ~isempty(Pm1)
|
|
Pm(:,2)=Pm1;
|
|
end
|
|
|
|
% notice that here truncated taylor is applied % khuang 8 JUL
|
|
% and this is the key differnet from Dt rule% khuang 8 JUL
|
|
% Here only at most 5 th order taylor series are considered for sin% khuang 8 JUL
|
|
% and cos function % khuang 8 JUL
|
|
[cosp,sinp,taylorN]=getTaylorPolynomials(d0,taylorN); % taylorN may be truncated
|
|
|
|
Mats=zeros(nSyn,4);
|
|
MatsR=zeros(nSyn,4);
|
|
MatsRs=zeros(nSyn,4);
|
|
|
|
% count the number for different kinds models % khuang 8 JUL
|
|
% ex: modelTag = [ 0 0 0 0 0 10 0 0].' % khuang 8 JUL
|
|
% ex: there are 10 gens using 6th order model % khuang 8 JUL
|
|
modelTag=accumarray(modSyn,ones(nSyn,1),[8,1]);
|
|
|
|
% determine the order of the model % khuang 8 JUL
|
|
% Do we really need for loop? % khuang 8 JUL
|
|
% the answer is yes since different gen may use different% khuang 8 JUL
|
|
% order model% khuang 8 JUL
|
|
for i=1:nSyn
|
|
% 8th order, no need to change% khuang 8 JUL
|
|
if modSyn(i)==8
|
|
IGd(i,1)=(eq20(i)-psid0(i))/Xgd2(i);
|
|
IGq(i,1)=(-ed20(i)-psiq0(i))/Xgq2(i);
|
|
Mats(i,:)=[sind(i),cosd(i),-cosd(i),sind(i)];
|
|
% 6th order% khuang 8 JUL
|
|
elseif modSyn(i)==6
|
|
% algebric equation to solve Id, Iq% khuang 8 JUL
|
|
IGd(i,1)=((ed20(i)-VGd(i,1))*Rga(i)+(eq20(i)-VGq(i,1))*Xgq2(i))/(Rga(i)*Rga(i)+Xgd2(i)*Xgq2(i));
|
|
IGq(i,1)=(-(ed20(i)-VGd(i,1))*Xgd2(i)+(eq20(i)-VGq(i,1))*Rga(i))/(Rga(i)*Rga(i)+Xgd2(i)*Xgq2(i));
|
|
% transform matrix (inverse version)% khuang 8 JUL
|
|
Mats(i,:)=[sind(i),cosd(i),-cosd(i),sind(i)];
|
|
% Here matrix is the inverse matrix, to understand this% khuang 8 JUL
|
|
% We have A*Ixy+B*Vxy = f => MatsR = A^-1, MatsRs = A^-1*B = MatsRs*B% khuang 8 JUL
|
|
% so Ixy = MatsR*f-MatsRs*Vxy, which is used later to% khuang 8 JUL
|
|
% eliminate Ixy when disturbance happens% khuang 8 JUL
|
|
MatsR(i,:)=[sind(i)*Rga(i)-cosd(i)*Xgd2(i),sind(i)*Xgq2(i)+cosd(i)*Rga(i),-cosd(i)*Rga(i)-sind(i)*Xgd2(i),-cosd(i)*Xgq2(i)+sind(i)*Rga(i)]/...
|
|
(Rga(i)*Rga(i)+Xgd2(i)*Xgq2(i));
|
|
MatsRs(i,:)=[MatsR(i,1)*sind(i)+MatsR(i,2)*cosd(i),-MatsR(i,1)*cosd(i)+MatsR(i,2)*sind(i),...
|
|
MatsR(i,3)*sind(i)+MatsR(i,4)*cosd(i),-MatsR(i,3)*cosd(i)+MatsR(i,4)*sind(i)];
|
|
% 5th order% khuang 8 JUL
|
|
elseif modSyn(i)==5
|
|
IGd(i,1)=((ed20(i)-VGd(i,1))*Rga(i)+(eq20(i)-VGq(i,1))*Xgq2(i))/(Rga(i)*Rga(i)+Xgd2(i)*Xgq2(i));
|
|
IGq(i,1)=(-(ed20(i)-VGd(i,1))*Xgd2(i)+(eq20(i)-VGq(i,1))*Rga(i))/(Rga(i)*Rga(i)+Xgd2(i)*Xgq2(i));
|
|
Mats(i,:)=[sind(i),cosd(i),-cosd(i),sind(i)];
|
|
MatsR(i,:)=[sind(i)*Rga(i)-cosd(i)*Xgd2(i),sind(i)*Xgq2(i)+cosd(i)*Rga(i),-cosd(i)*Rga(i)-sind(i)*Xgd2(i),-cosd(i)*Xgq2(i)+sind(i)*Rga(i)]/...
|
|
(Rga(i)*Rga(i)+Xgd2(i)*Xgq2(i));
|
|
MatsRs(i,:)=[MatsR(i,1)*sind(i)+MatsR(i,2)*cosd(i),-MatsR(i,1)*cosd(i)+MatsR(i,2)*sind(i),...
|
|
MatsR(i,3)*sind(i)+MatsR(i,4)*cosd(i),-MatsR(i,3)*cosd(i)+MatsR(i,4)*sind(i)];
|
|
% 4th order% khuang 8 JUL
|
|
elseif modSyn(i)==4
|
|
IGd(i,1)=((ed10(i)-VGd(i,1))*Rga(i)+(eq10(i)-VGq(i,1))*Xgq1(i))/(Rga(i)*Rga(i)+Xgd1(i)*Xgq1(i));
|
|
IGq(i,1)=(-(ed10(i)-VGd(i,1))*Xgd1(i)+(eq10(i)-VGq(i,1))*Rga(i))/(Rga(i)*Rga(i)+Xgd1(i)*Xgq1(i));
|
|
Mats(i,:)=[sind(i),cosd(i),-cosd(i),sind(i)];
|
|
MatsR(i,:)=[sind(i)*Rga(i)-cosd(i)*Xgd1(i),sind(i)*Xgq1(i)+cosd(i)*Rga(i),-cosd(i)*Rga(i)-sind(i)*Xgd1(i),-cosd(i)*Xgq1(i)+sind(i)*Rga(i)]/...
|
|
(Rga(i)*Rga(i)+Xgd1(i)*Xgq1(i));
|
|
MatsRs(i,:)=[MatsR(i,1)*sind(i)+MatsR(i,2)*cosd(i),-MatsR(i,1)*cosd(i)+MatsR(i,2)*sind(i),...
|
|
MatsR(i,3)*sind(i)+MatsR(i,4)*cosd(i),-MatsR(i,3)*cosd(i)+MatsR(i,4)*sind(i)];
|
|
% 3rd order% khuang 8 JUL
|
|
elseif modSyn(i)==3
|
|
IGd(i,1)=((-VGd(i,1))*Rga(i)+(eq10(i)-VGq(i,1))*Xgq(i))/(Rga(i)*Rga(i)+Xgd1(i)*Xgq(i));
|
|
IGq(i,1)=(-(-VGd(i,1))*Xgd1(i)+(eq10(i)-VGq(i,1))*Rga(i))/(Rga(i)*Rga(i)+Xgd1(i)*Xgq(i));
|
|
Mats(i,:)=[sind(i),cosd(i),-cosd(i),sind(i)];
|
|
MatsR(i,:)=[sind(i)*Rga(i)-cosd(i)*Xgd1(i),sind(i)*Xgq(i)+cosd(i)*Rga(i),-cosd(i)*Rga(i)-sind(i)*Xgd1(i),-cosd(i)*Xgq(i)+sind(i)*Rga(i)]/...
|
|
(Rga(i)*Rga(i)+Xgd1(i)*Xgq(i));
|
|
MatsRs(i,:)=[MatsR(i,1)*sind(i)+MatsR(i,2)*cosd(i),-MatsR(i,1)*cosd(i)+MatsR(i,2)*sind(i),...
|
|
MatsR(i,3)*sind(i)+MatsR(i,4)*cosd(i),-MatsR(i,3)*cosd(i)+MatsR(i,4)*sind(i)];
|
|
% classical model% khuang 8 JUL
|
|
elseif modSyn(i)==2
|
|
IGd(i,1)=((-VGd(i,1))*Rga(i)+(Ef0(i)-VGq(i,1))*Xgq(i))/(Rga(i)*Rga(i)+Xgd(i)*Xgq(i));
|
|
IGq(i,1)=(-(-VGd(i,1))*Xgd(i)+(Ef0(i)-VGq(i,1))*Rga(i))/(Rga(i)*Rga(i)+Xgd(i)*Xgq(i));
|
|
Mats(i,:)=[sind(i),cosd(i),-cosd(i),sind(i)];
|
|
MatsR(i,:)=[sind(i)*Rga(i)-cosd(i)*Xgd(i),sind(i)*Xgq(i)+cosd(i)*Rga(i),-cosd(i)*Rga(i)-sind(i)*Xgd(i),-cosd(i)*Xgq(i)+sind(i)*Rga(i)]/...
|
|
(Rga(i)*Rga(i)+Xgd(i)*Xgq(i));
|
|
MatsRs(i,:)=[MatsR(i,1)*sind(i)+MatsR(i,2)*cosd(i),-MatsR(i,1)*cosd(i)+MatsR(i,2)*sind(i),...
|
|
MatsR(i,3)*sind(i)+MatsR(i,4)*cosd(i),-MatsR(i,3)*cosd(i)+MatsR(i,4)*sind(i)];
|
|
end
|
|
end
|
|
% not sure how to use them now, but they are zeroth order of Ix and Iy% khuang 8 JUL
|
|
JG(:,1)= sind.*IGd(:,1)+cosd.*IGq(:,1);
|
|
KG(:,1)=-cosd.*IGd(:,1)+sind.*IGq(:,1);
|
|
|
|
% put previous matrix in a right place in all buses instead of only% khuang 8 JUL
|
|
% generator buses% khuang 8 JUL
|
|
MatGCD=-[sparse(synIdx,synIdx,MatsRs(:,1),nbus,nbus),sparse(synIdx,synIdx,MatsRs(:,2),nbus,nbus);...
|
|
sparse(synIdx,synIdx,MatsRs(:,3),nbus,nbus),sparse(synIdx,synIdx,MatsRs(:,4),nbus,nbus)];
|
|
else
|
|
d=zeros(0,nlvl+1);
|
|
w=zeros(0,nlvl+1);
|
|
eq1=zeros(0,nlvl+1);
|
|
eq2=zeros(0,nlvl+1);
|
|
ed1=zeros(0,nlvl+1);
|
|
ed2=zeros(0,nlvl+1);
|
|
psiq=zeros(0,nlvl+1);
|
|
psid=zeros(0,nlvl+1);
|
|
JG=zeros(0,nlvl+1);
|
|
KG=zeros(0,nlvl+1);
|
|
IGq=zeros(0,nlvl+1);
|
|
IGd=zeros(0,nlvl+1);
|
|
VGq=zeros(0,nlvl+1);
|
|
VGd=zeros(0,nlvl+1);
|
|
Cd=zeros(0,nlvl+1);
|
|
Sd=zeros(0,nlvl+1);
|
|
Ef=zeros(0,nlvl+1);
|
|
Pm=zeros(0,nlvl+1);
|
|
end
|
|
%------------------------------Initialization of GEN------------------% khuang 8 JUL
|
|
%------------------------------EnD------------------------------------% khuang 8 JUL
|
|
|
|
|
|
|
|
%------------------------------Initialization of Exciter------------------% khuang 8 JUL
|
|
%------------------------------START------------------------------------% khuang 8 JUL
|
|
if ~isempty(exc)
|
|
nExc =size(exc,1);
|
|
% All Type 3 AVR, a 3rd order controller
|
|
% for Type 3 AVR, avr0(:,1:3) are Vavrm, Vavrr, Vavrf,
|
|
% and avr0(:,4) is reference Vref (input for secondary voltage control).
|
|
excIdx = exc(:,1);
|
|
VavrMax = exc(:,3);
|
|
VavrMin = exc(:,4);
|
|
muavr0 = exc(:,5);
|
|
Tavr1 = exc(:,7);
|
|
Tavr2 = exc(:,6);
|
|
vavrf0 = exc(:,8);
|
|
Vavr0 = exc(:,9);
|
|
Tavre = exc(:,10);
|
|
Tavrr = exc(:,11);
|
|
|
|
%here I need to check why Vavrref is time varing instead of constant% khuang 8 JUL
|
|
% memory is given to state variables of EXC% khuang 8 JUL
|
|
Vavrm = zeros(nExc,nlvl+1);
|
|
Vavrr = zeros(nExc,nlvl+1);
|
|
Vavrf = zeros(nExc,nlvl+1);
|
|
Vavrref= zeros(nExc,nlvl+1);
|
|
|
|
% zeroth order value is given% khuang 8 JUL
|
|
Vavrm(:,1)=real(Vavrm0);
|
|
Vavrr(:,1)=real(Vavrr0);
|
|
Vavrf(:,1)=real(Vavrf0);
|
|
Vavrref(:,1)=real(Vavrref0);
|
|
|
|
% here Varref1 is given with syspara.% khuang 8 JUL
|
|
if ~isempty(Varref1)
|
|
Vavrref(:,2)=Varref1;
|
|
end
|
|
|
|
% non-windup limiter, check the limit.% khuang 8 JUL
|
|
tavrMaxDiff=Vavrf(:,1)-VavrMax;
|
|
tavrMinDiff=Vavrf(:,1)-VavrMin;
|
|
|
|
% label values in different interval.% khuang 8 JUL
|
|
avrSt=zeros(nExc,1);
|
|
avrSt(tavrMaxDiff>0)=1;
|
|
avrSt(tavrMinDiff<0)=-1;
|
|
|
|
% output after the limiter.% khuang 8 JUL
|
|
Ef(excIdx(avrSt==-1),1)=VavrMin(avrSt==-1);
|
|
Ef(excIdx(avrSt== 1),1)=VavrMax(avrSt== 1);
|
|
Ef(excIdx(avrSt== 0),1)=Vavrf(avrSt==0,1);
|
|
|
|
else
|
|
Vavrm=zeros(0,nlvl+1);
|
|
Vavrr=zeros(0,nlvl+1);
|
|
Vavrf=zeros(0,nlvl+1);
|
|
Vavrref=zeros(0,nlvl+1);
|
|
end
|
|
%------------------------------Initialization of Exciter------------------% khuang 8 JUL
|
|
%------------------------------END------------------------------------% khuang 8 JUL
|
|
|
|
|
|
|
|
|
|
%------------------------------Initialization of Turbing Governor------------------% khuang 8 JUL
|
|
%------------------------------START------------------------------------% khuang 8 JUL
|
|
if ~isempty(tg)
|
|
nTg = size(tg,1);
|
|
% Type 2 Turbing governor.
|
|
% one DE, one AE and one limiter
|
|
tgIdx = tg(:,1);
|
|
|
|
wtgref = tg(:,3);
|
|
Rtg = tg(:,4);
|
|
Ttgmax = tg(:,5);
|
|
Ttgmin = tg(:,6);
|
|
Ttg2 = tg(:,7);
|
|
Ttg1 = tg(:,8);
|
|
|
|
tgovg = zeros(nTg,nlvl+1); % tg % khuang 8 JUL
|
|
tgovm = zeros(nTg,nlvl+1); % Tmi* % khuang 8 JUL
|
|
Tmech = zeros(nTg,nlvl+1); % Tmi0 % khuang 8 JUL
|
|
|
|
% zeroth value is given % khuang 8 JUL
|
|
tgovg(:,1)=real(tgovg0);
|
|
tgovm(:,1)=real(tgovm0);
|
|
Tmech(:,1)=real(tgovmech0);
|
|
|
|
if ~isempty(Tmech1)
|
|
Tmech(:,2)=Tmech1;
|
|
end
|
|
|
|
% check if limit is approached % khuang 8 JUL
|
|
tgovMaxDiff=tgovm(:,1)-Ttgmax;
|
|
tgovMinDiff=tgovm(:,1)-Ttgmin;
|
|
|
|
govSt=zeros(nTg,1);
|
|
govSt(tgovMaxDiff>0)=1;
|
|
govSt(tgovMinDiff<0)=-1;
|
|
% if limit is approached, set Pm to constant value. % khuang 8 JUL
|
|
Pm(tgIdx(govSt==0),1)=tgovm(govSt==0,1);
|
|
Pm(tgIdx(govSt==1),1)=Ttgmax(govSt==1,1);
|
|
Pm(tgIdx(govSt==-1),1)=Ttgmin(govSt==-1,1);
|
|
else
|
|
tgovg=zeros(0,nlvl+1);
|
|
tgovm=zeros(0,nlvl+1);
|
|
Tmech=zeros(0,nlvl+1);
|
|
end
|
|
%------------------------------Initialization of Turbing Governor------------------% khuang 8 JUL
|
|
%------------------------------END------------------------------------% khuang 8 JUL
|
|
|
|
% this part i don't quite understand. It looks like f denotes frequency % khuang 1 JUL
|
|
% on every bus, is it relevant with frequency dependant load? % khuang 1 JUL
|
|
% now i find that this is for dynamics of agc. % khuang 8 JUL
|
|
f=zeros(nbus,nlvl+1);
|
|
f(:,1)=f0;
|
|
synTag=zeros(nbus,1);
|
|
synTag(syn(:,1))=1:nSyn;
|
|
numSynOnBus=accumarray(syn(:,1),1,[nbus,1]);
|
|
dpgTag=ones(nbus,1);
|
|
for islIdx=1:nIslands
|
|
busIsland=find(islands==islIdx);
|
|
synTagIsland=synTag(busIsland);
|
|
wIsland=w(synTagIsland(synTagIsland~=0),1);
|
|
if ~isempty(wIsland)
|
|
f(busIsland,1)=mean(wIsland); % note that here the freq can be different
|
|
dpgTag(busIsland)=0;
|
|
end
|
|
end
|
|
|
|
%AGC part % khuang 8 JUL
|
|
if ~isempty(agc)
|
|
agcExt=zeros(nbus,size(agc,2));
|
|
agcExt(agc(:,1),:)=agc;
|
|
dpg=zeros(nbus,nlvl+1);
|
|
dpg(:,1)=dpg0;
|
|
fdk=agcExt(:,2)+agcExt(:,3); %1/R+D
|
|
else
|
|
dpg=zeros(nbus,nlvl+1);
|
|
fdk=zeros(nbus,1);
|
|
end
|
|
|
|
% this is for long term dynamic, it seems that not considered here % khuang 8 JUL
|
|
if ~isempty(cac)&&~isempty(cluster)
|
|
|
|
else
|
|
qplt=zeros(0,nlvl+1);
|
|
vg=zeros(0,nlvl+1);
|
|
end
|
|
|
|
% freq relevant part induced by AGC % khuang 8 JUL
|
|
FreqReal=sparse(1:nbus,1:nbus,-freqKeptTag.*fdk.*E0,nbus,nbus);
|
|
FreqImag=sparse(1:nbus,1:nbus,-freqKeptTag.*fdk.*F0,nbus,nbus);
|
|
Freq2freq=sparse([1:nbus,1:nbus],[1:nbus,frefs(islands)'],[ones(1,nbus),-ones(1,nbus)],nbus,nbus);
|
|
|
|
Y11=-G;Y12=B;Y21=-B;Y22=-G;
|
|
% Influence to Origianl Power flow % khuang 8 JUL
|
|
YEF11=P0M+sparse(1:nbus,1:nbus,freqKeptTag.*(-fdk.*f0+dpg0),nbus,nbus);YEF12=-Q0M;YEF21=-Q0M;YEF22=-P0M-sparse(1:nbus,1:nbus,freqKeptTag.*(-fdk.*f0+dpg0),nbus,nbus);
|
|
|
|
% Counting influence of ZIP load into Y matrix. % khuang 8 JUL
|
|
if ~isempty(zip)
|
|
Y11=Y11-sparse(1:nbus,1:nbus,accumarray(zipIdx,LHS_MatZip(:,1),[nbus,1]),nbus,nbus);
|
|
Y12=Y12-sparse(1:nbus,1:nbus,accumarray(zipIdx,LHS_MatZip(:,2),[nbus,1]),nbus,nbus);
|
|
Y21=Y21-sparse(1:nbus,1:nbus,accumarray(zipIdx,LHS_MatZip(:,3),[nbus,1]),nbus,nbus);
|
|
Y22=Y22-sparse(1:nbus,1:nbus,accumarray(zipIdx,LHS_MatZip(:,4),[nbus,1]),nbus,nbus);
|
|
end
|
|
YLHS=[Y11,Y12;Y21,Y22];
|
|
|
|
% Counting influence of Motors into small Y matrix % khuang 8 JUL
|
|
if ~isempty(ind)
|
|
YLHS=YLHS-...
|
|
[sparse(1:nbus,1:nbus,LHS_MatInd_Bus_sqz(:,1),nbus,nbus),sparse(1:nbus,1:nbus,LHS_MatInd_Bus_sqz(:,3),nbus,nbus);...
|
|
sparse(1:nbus,1:nbus,LHS_MatInd_Bus_sqz(:,2),nbus,nbus),sparse(1:nbus,1:nbus,LHS_MatInd_Bus_sqz(:,4),nbus,nbus)];
|
|
end
|
|
|
|
% Counting influence of generators into small Y matrix % khuang 8 JUL
|
|
if ~isempty(syn)
|
|
YLHS=YLHS+MatGCD;
|
|
end
|
|
|
|
idxNonSw=find(busType~=2);
|
|
idxNonSwxD=find(fswTagxD==0);
|
|
idxNonSwD=find(busType~=2&fswTagxD==1);
|
|
|
|
% This is the left hand side matrix totally % khuang 8 JUL
|
|
LHS_mat=[YLHS([idxNonSw;idxNonSw+nbus],[idxNonSw;idxNonSw+nbus]),...
|
|
[YEF11(idxNonSw,idxNonSw),YEF12(idxNonSw,idxNonSw),-F0M(idxNonSw,ipv),FreqReal(idxNonSw,freqKeptTag==1);...
|
|
YEF21(idxNonSw,idxNonSw),YEF22(idxNonSw,idxNonSw),-E0M(idxNonSw,ipv),-FreqImag(idxNonSw,freqKeptTag==1)];...
|
|
C0M(ipv,idxNonSw),D0M(ipv,idxNonSw),sparse(npv,2*npq+3*npv+nFreqKept);...
|
|
E0M(idxNonSw,idxNonSw),-F0M(idxNonSw,idxNonSw),C0M(idxNonSw,idxNonSw),-D0M(idxNonSw,idxNonSw),sparse(npq+npv,npv+nFreqKept);...
|
|
F0M(idxNonSw,idxNonSw),E0M(idxNonSw,idxNonSw),D0M(idxNonSw,idxNonSw),C0M(idxNonSw,idxNonSw),sparse(npq+npv,npv+nFreqKept);...
|
|
sparse(sum(freqKeptTagxRef),size(idxNonSw,1)+size(idxNonSw,1)+2*npq+3*npv),Freq2freq(freqKeptTagxRef==1,freqKeptTag==1);...
|
|
sparse(size(idxNonSwD,1),size(idxNonSw,1)),sparse(1:size(idxNonSwD,1),idxNonSwD,ones(size(idxNonSwD,1),1),size(idxNonSwD,1),size(idxNonSw,1)),sparse(size(idxNonSwD,1),2*npq+3*npv+nFreqKept)];
|
|
|
|
% if nbus<=500
|
|
% [L_LHS_mat,U_LHS_mat,p_LHS_mat]=lu(LHS_mat,'vector');
|
|
% end
|
|
|
|
|
|
% deterine if we use LU factoration
|
|
% for this part, i assume the system algebrac equation is under a good
|
|
% condition number and the dimension is not very high, otherwise LU will
|
|
% be time consuming % khuang 8 JUL
|
|
useLU=isfield(SysPara,'iden')&&isfield(SysPara,'p_amd');
|
|
|
|
if useLU
|
|
if isempty(SysPara.p_amd)
|
|
p_amd = colamd (LHS_mat) ;
|
|
save([SysPara.iden,'.mat'],'p_amd');
|
|
else
|
|
p_amd=SysPara.p_amd;
|
|
end
|
|
MxI = speye (size(LHS_mat)) ;
|
|
MxQ = MxI (:, p_amd) ;
|
|
if IS_OCTAVE
|
|
[MxL,MxU,MxP,MxQx] = lu (LHS_mat*MxQ) ;
|
|
else
|
|
[MxL,MxU,MxP] = lu (LHS_mat*MxQ) ;
|
|
end
|
|
end
|
|
|
|
|
|
%%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%%%this is the recursive part for computing high order of time series%%%%%%%%%%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% khuang 8 JUL
|
|
|
|
% strat interations nlvl: order of Taylor series. % khuang 8 JUL
|
|
for i=1:nlvl
|
|
|
|
% khuang 8 JUL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% seq2 provides two columns from 0 to i, and i to 0
|
|
% seq2p provides two columns from 0 to i+1, and i+1 to 0
|
|
% seq3 provides 3 columns, the summary of each row is equal to i(binominal coefficients)
|
|
% khuang 8 JUL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
seq2=getseq(i,2);
|
|
seq2p=getseq(i+1,2);
|
|
seq3=getseq(i,3);
|
|
idxSeq2=sum(seq2==i,2);
|
|
idxSeq2x=sum(seq2(:,2)==i,2);
|
|
idxSeq2p=sum(seq2p>=i,2);
|
|
idxSeq3=sum(seq3==i,2);
|
|
idxSeq3x=sum(seq3(:,[2,3])==i,2);
|
|
|
|
% khuang 8 JUL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% seq2R is usually used in constructing algebric equations
|
|
% seq2R provides two columns from 1 to i-1, and i-1 to 1
|
|
% seq2x provides two columns from 1 to i, and i-1 to 0
|
|
% seq2m provides two columns from 0 to i-1, and i-1 to 0
|
|
% seq2mm provides two columns from 0 to i-2, and i-2 to 0
|
|
% khuang 8 JUL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
seq2R=seq2(idxSeq2==0,:);
|
|
seq2x=seq2(idxSeq2x==0,:);
|
|
seq2m=getseq(i-1,2);
|
|
seq2mm=getseq(i-2,2);
|
|
|
|
RHSILr=zeros(nbus,1);
|
|
RHSILi=zeros(nbus,1);
|
|
|
|
% This part is for induction motor % khuang 8 JUL
|
|
if ~isempty(ind)
|
|
% package right hand side vector at every iteration. % khuang 8 JUL
|
|
rhsM=sum(Vm(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2)-1j*X2.*sum(IR(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2);
|
|
% rhsI=-real(sum(IR(:,seq2R(:,1)+1).*conj(IR(:,seq2R(:,2)+1)),2))+...
|
|
% (T1.*sum(s(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2)+T2.*sum(s(:,seq3R(:,1)+1).*s(:,seq3R(:,2)+1).*s(:,seq3R(:,3)+1),2))./R2+...
|
|
% (T0.*s(:,i)+T1.*sum(s(:,seq2m(:,1)+1).*s(:,seq2m(:,2)+1),2)+T2.*sum(s(:,seq3m(:,1)+1).*s(:,seq3m(:,2)+1).*s(:,seq3m(:,3)+1),2)).*Rm./R2;
|
|
|
|
% s(:,i+1)=(Rind0.*(T0.*s(:,i)+T1.*sum(s(:,seq2m(:,1)+1).*s(:,seq2m(:,2)+1),2)+T2.*sum(s(:,seq3m(:,1)+1).*s(:,seq3m(:,2)+1).*s(:,seq3m(:,3)+1),2))...
|
|
% -real(sum(IR(:,seq2m(:,1)+1).*conj(IR(:,seq2m(:,2)+1)),2)).*R2-2*Hm.*sum(repmat(seq2R(:,1)',nInd,1).*s(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2))...
|
|
% ./(2*Hm.*s(:,1)*i);
|
|
% if i>=2
|
|
% s(:,i+1)=s(:,i+1)+...
|
|
% Rind1.*(T0.*s(:,i-1)+T1.*sum(s(:,seq2mm(:,1)+1).*s(:,seq2mm(:,2)+1),2)+T2.*sum(s(:,seq3mm(:,1)+1).*s(:,seq3mm(:,2)+1).*s(:,seq3mm(:,3)+1),2))...
|
|
% ./(2*Hm.*s(:,1)*i);
|
|
% end
|
|
|
|
% update the high order of slip, a special setting is required for
|
|
% low order when i<2. % khuang 8 JUL
|
|
s(:,i+1)=(Rind0.*(T1.*s(:,i)+T2.*sum(s(:,seq2m(:,1)+1).*s(:,seq2m(:,2)+1),2))-real(sum(Vm(:,seq2m(:,1)+1).*conj(IR(:,seq2m(:,2)+1)),2)))./(2*Hm*i);
|
|
if i>=2
|
|
s(:,i+1)=s(:,i+1)+...
|
|
Rind1.*(T1.*s(:,i-1)+T2.*sum(s(:,seq2mm(:,1)+1).*s(:,seq2mm(:,2)+1),2))...
|
|
./(2*Hm*i);
|
|
end
|
|
if i==1
|
|
s(:,i+1)=s(:,i+1)+Rind0.*T0./(2*Hm*i);
|
|
end
|
|
if i==2
|
|
s(:,i+1)=s(:,i+1)+Rind1.*T0./(2*Hm*i);
|
|
end
|
|
% for dynamic model, Right hand side vector is required a update. % khuang 8 JUL
|
|
addenRhs=Vm(:,1).*s(:,i+1)-1j*X2.*IR(:,1).*s(:,i+1);
|
|
|
|
% rhsBus=zeros(2,nInd);
|
|
% for j=1:nInd
|
|
% rhsBus(:,j)=RHS_C_Shr{j}*[real(rhsM(j)+addenRhs(j));imag(rhsM(j)+addenRhs(j));0;0];
|
|
% end
|
|
|
|
% count the influence of dynamic of slip into rigt hand side
|
|
% vector.% khuang 8 JUL
|
|
tempRhsInd=rhsM+addenRhs;
|
|
rhsBus=[RHS_C_Shr_sqz(:,1).*real(tempRhsInd)+RHS_C_Shr_sqz(:,3).*imag(tempRhsInd),RHS_C_Shr_sqz(:,2).*real(tempRhsInd)+RHS_C_Shr_sqz(:,4).*imag(tempRhsInd)]';
|
|
|
|
%accumulate currents IL.% khuang 8 JUL
|
|
RHSILr=accumarray(indIdx,rhsBus(1,:)',[nbus,1]);
|
|
RHSILi=accumarray(indIdx,rhsBus(2,:)',[nbus,1]);
|
|
|
|
% rhsBus=zeros(5,nInd);
|
|
% rhsM=sum(Vm(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2)-1j*X2.*sum(IR(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2);
|
|
% rhsImod=Rind1.*(T1.*s(:,i)+T2.*sum(s(:,seq2m(:,1)+1).*s(:,seq2m(:,2)+1),2))+Rind0.*T2.*sum(s(:,seq2R(:,1)+1).*s(:,seq2R(:,2)+1),2)-...
|
|
% real(sum(V(indIdx,seq2R(:,1)+1).*conj(IR(:,seq2R(:,2)+1)),2))+...
|
|
% real(sum(IL(:,seq2R(:,1)+1).*conj(IR(:,seq2R(:,2)+1)),2).*Z1);
|
|
% if i==1
|
|
% rhsImod=rhsImod+Rind1.*T0;
|
|
% end
|
|
% rhsIL=V(indIdx,i).*Yeind1-IL(:,i).*Ye1ind1;
|
|
% for j=1:nInd
|
|
% rhsBus(:,j)=squeeze(RHS_C_Shr(j,:,:))*[real(rhsM(j));imag(rhsM(j));rhsImod(j);real(rhsIL(j));imag(rhsIL(j))];
|
|
% end
|
|
% RHSILr=accumarray(indIdx,rhsBus(3,:)',[nbus,1]);
|
|
% RHSILi=accumarray(indIdx,rhsBus(4,:)',[nbus,1]);
|
|
end
|
|
|
|
% strat update ZIP load into currents.% khuang 8 JUL
|
|
RHSIiLr=zeros(nbus,1);
|
|
RHSIiLi=zeros(nbus,1);
|
|
if ~isempty(zip)
|
|
RHS_BZip=(real(sum(V(zipIdx,seq2R(:,1)+1).*conj(V(zipIdx,seq2R(:,2)+1)),2))-sum(BiL(:,seq2R(:,1)+1).*BiL(:,seq2R(:,2)+1),2))./Bi0/2;
|
|
RHZ_BIConv=sum(IiL(:,seq2R(:,1)+1).*BiL(:,seq2R(:,2)+1),2);
|
|
RHSILr_full=Rzip1.*(JI.*real(V(zipIdx,i))-KI.*imag(V(zipIdx,i)))./Bi0-real(RHZ_BIConv)./Bi0-Ji0L.*RHS_BZip./Bi0;
|
|
RHSILi_full=Rzip1.*(KI.*real(V(zipIdx,i))+JI.*imag(V(zipIdx,i)))./Bi0-imag(RHZ_BIConv)./Bi0-Ki0L.*RHS_BZip./Bi0;
|
|
RHSIiLr=accumarray(zipIdx,RHSILr_full,[nbus,1]);
|
|
RHSIiLi=accumarray(zipIdx,RHSILi_full,[nbus,1]);
|
|
end
|
|
|
|
% Start update generators.% khuang 8 JUL
|
|
RHSIGr=zeros(nbus,1);
|
|
RHSIGi=zeros(nbus,1);
|
|
if ~isempty(syn)
|
|
RhsEd=zeros(nSyn,1);
|
|
RhsEq=zeros(nSyn,1);
|
|
IGdAdd=zeros(nSyn,1);
|
|
IGqAdd=zeros(nSyn,1);
|
|
% select different models for generators.% khuang 8 JUL
|
|
if modelTag(8)>0
|
|
d(modSyn==8,i+1)=(wgb(modSyn==8).*w(modSyn==8,i))/i;
|
|
w(modSyn==8,i+1)=(Pm(modSyn==8,i)-...
|
|
(sum(psid(modSyn==8,seq2m(:,1)+1).*IGq(modSyn==8,seq2m(:,2)+1),2)-sum(psiq(modSyn==8,seq2m(:,1)+1).*IGd(modSyn==8,seq2m(:,2)+1),2))-...
|
|
Dg(modSyn==8).*w(modSyn==8,i))./Mg(modSyn==8)/i;
|
|
psid(modSyn==8,i+1)=wgb(modSyn==8).*(Rga(modSyn==8).*IGd(modSyn==8,i)+psiq(modSyn==8,i)+VGd(modSyn==8,i))/i;
|
|
psiq(modSyn==8,i+1)=wgb(modSyn==8).*(Rga(modSyn==8).*IGq(modSyn==8,i)-psid(modSyn==8,i)+VGq(modSyn==8,i))/i;
|
|
eq1(modSyn==8,i+1)=(-eq1(modSyn==8,i)-(Xgd(modSyn==8)-Xgd1(modSyn==8)-gammad(modSyn==8)).*IGd(modSyn==8,i)+(1-TgAA(modSyn==8)./Tgd1(modSyn==8)).*Ef(modSyn==8,i))./Tgd1(modSyn==8)/i;
|
|
ed1(modSyn==8,i+1)=(-ed1(modSyn==8,i)+(Xgq(modSyn==8)-Xgq1(modSyn==8)-gammaq(modSyn==8)).*IGq(modSyn==8,i))./Tgq1(modSyn==8)/i;
|
|
eq2(modSyn==8,i+1)=(-eq2(modSyn==8,i)+eq1(modSyn==8,i)-(Xgd1(modSyn==8)-Xgd2(modSyn==8)+gammad(modSyn==8)).*IGd(modSyn==8,i)+TgAA(modSyn==8)./Tgd1(modSyn==8).*Ef(modSyn==8,i))./Tgd2(modSyn==8)/i;
|
|
ed2(modSyn==8,i+1)=(-ed2(modSyn==8,i)+ed1(modSyn==8,i)+(Xgq1(modSyn==8)-Xgq2(modSyn==8)+gammaq(modSyn==8)).*IGq(modSyn==8,i))./Tgq2(modSyn==8)/i;
|
|
IGdAdd(modSyn==8)=(eq2(modSyn==8,i+1)-psid(modSyn==8,i+1))./Xgd2(modSyn==8);
|
|
IGqAdd(modSyn==8)=(-ed2(modSyn==8,i+1)-psiq(modSyn==8,i+1))./Xgq2(modSyn==8);
|
|
end
|
|
if modelTag(6)>0
|
|
d(modSyn==6,i+1)=(wgb(modSyn==6).*w(modSyn==6,i))/i;
|
|
w(modSyn==6,i+1)=(Pm(modSyn==6,i)-...
|
|
(sum(VGq(modSyn==6,seq2m(:,1)+1).*IGq(modSyn==6,seq2m(:,2)+1),2)+sum(VGd(modSyn==6,seq2m(:,1)+1).*IGd(modSyn==6,seq2m(:,2)+1),2)+...
|
|
Rga(modSyn==6).*(sum(IGq(modSyn==6,seq2m(:,1)+1).*IGq(modSyn==6,seq2m(:,2)+1),2)+sum(IGd(modSyn==6,seq2m(:,1)+1).*IGd(modSyn==6,seq2m(:,2)+1),2)))-...
|
|
Dg(modSyn==6).*w(modSyn==6,i))./Mg(modSyn==6)/i;
|
|
eq1(modSyn==6,i+1)=(-eq1(modSyn==6,i)-(Xgd(modSyn==6)-Xgd1(modSyn==6)-gammad(modSyn==6)).*IGd(modSyn==6,i)+(1-TgAA(modSyn==6)./Tgd1(modSyn==6)).*Ef(modSyn==6,i))./Tgd1(modSyn==6)/i;
|
|
ed1(modSyn==6,i+1)=(-ed1(modSyn==6,i)+(Xgq(modSyn==6)-Xgq1(modSyn==6)-gammaq(modSyn==6)).*IGq(modSyn==6,i))./Tgq1(modSyn==6)/i;
|
|
eq2(modSyn==6,i+1)=(-eq2(modSyn==6,i)+eq1(modSyn==6,i)-(Xgd1(modSyn==6)-Xgd2(modSyn==6)+gammad(modSyn==6)).*IGd(modSyn==6,i)+TgAA(modSyn==6)./Tgd1(modSyn==6).*Ef(modSyn==6,i))./Tgd2(modSyn==6)/i;
|
|
ed2(modSyn==6,i+1)=(-ed2(modSyn==6,i)+ed1(modSyn==6,i)+(Xgq1(modSyn==6)-Xgq2(modSyn==6)+gammaq(modSyn==6)).*IGq(modSyn==6,i))./Tgq2(modSyn==6)/i;
|
|
RhsEd(modSyn==6)=ed2(modSyn==6,i+1);
|
|
RhsEq(modSyn==6)=eq2(modSyn==6,i+1);
|
|
end
|
|
if modelTag(5)>0
|
|
d(modSyn==5,i+1)=(wgb(modSyn==5).*w(modSyn==5,i))/i;
|
|
w(modSyn==5,i+1)=(Pm(modSyn==5,i)-...
|
|
(sum(VGq(modSyn==5,seq2m(:,1)+1).*IGq(modSyn==5,seq2m(:,2)+1),2)+sum(VGd(modSyn==5,seq2m(:,1)+1).*IGd(modSyn==5,seq2m(:,2)+1),2)+...
|
|
Rga(modSyn==5).*(sum(IGq(modSyn==5,seq2m(:,1)+1).*IGq(modSyn==5,seq2m(:,2)+1),2)+sum(IGd(modSyn==5,seq2m(:,1)+1).*IGd(modSyn==5,seq2m(:,2)+1),2)))-...
|
|
Dg(modSyn==5).*w(modSyn==5,i))./Mg(modSyn==5)/i;
|
|
eq1(modSyn==5,i+1)=(-eq1(modSyn==5,i)-(Xgd(modSyn==5)-Xgd1(modSyn==5)-gammad(modSyn==5)).*IGd(modSyn==5,i)+(1-TgAA(modSyn==5)./Tgd1(modSyn==5)).*Ef(modSyn==5,i))./Tgd1(modSyn==5)/i;
|
|
eq2(modSyn==5,i+1)=(-eq2(modSyn==5,i)+eq1(modSyn==5,i)-(Xgd1(modSyn==5)-Xgd2(modSyn==5)+gammad(modSyn==5)).*IGd(modSyn==5,i)+TgAA(modSyn==5)./Tgd1(modSyn==5).*Ef(modSyn==5,i))./Tgd2(modSyn==5)/i;
|
|
ed2(modSyn==5,i+1)=(-ed2(modSyn==5,i)+(Xgq(modSyn==5)-Xgq2(modSyn==5)).*IGq(modSyn==5,i))./Tgq2(modSyn==5)/i;
|
|
RhsEd(modSyn==5)=ed2(modSyn==5,i+1);
|
|
RhsEq(modSyn==5)=eq2(modSyn==5,i+1);
|
|
end
|
|
if modelTag(4)>0
|
|
d(modSyn==4,i+1)=(wgb(modSyn==4).*w(modSyn==4,i))/i;
|
|
w(modSyn==4,i+1)=(Pm(modSyn==4,i)-...
|
|
(sum(VGq(modSyn==4,seq2m(:,1)+1).*IGq(modSyn==4,seq2m(:,2)+1),2)+sum(VGd(modSyn==4,seq2m(:,1)+1).*IGd(modSyn==4,seq2m(:,2)+1),2)+...
|
|
Rga(modSyn==4).*(sum(IGq(modSyn==4,seq2m(:,1)+1).*IGq(modSyn==4,seq2m(:,2)+1),2)+sum(IGd(modSyn==4,seq2m(:,1)+1).*IGd(modSyn==4,seq2m(:,2)+1),2)))-...
|
|
Dg(modSyn==4).*w(modSyn==4,i))./Mg(modSyn==4)/i;
|
|
eq1(modSyn==4,i+1)=(-eq1(modSyn==4,i)-(Xgd(modSyn==4)-Xgd1(modSyn==4)).*IGd(modSyn==4,i)+Ef(modSyn==4,i))./Tgd1(modSyn==4)/i;
|
|
ed1(modSyn==4,i+1)=(-ed1(modSyn==4,i)+(Xgq(modSyn==4)-Xgq1(modSyn==4)).*IGq(modSyn==4,i))./Tgq1(modSyn==4)/i;
|
|
RhsEd(modSyn==4)=ed1(modSyn==4,i+1);
|
|
RhsEq(modSyn==4)=eq1(modSyn==4,i+1);
|
|
end
|
|
if modelTag(3)>0
|
|
d(modSyn==3,i+1)=(wgb(modSyn==3).*w(modSyn==3,i))/i;
|
|
w(modSyn==3,i+1)=(Pm(modSyn==3,i)-...
|
|
(sum(VGq(modSyn==3,seq2m(:,1)+1).*IGq(modSyn==3,seq2m(:,2)+1),2)+sum(VGd(modSyn==3,seq2m(:,1)+1).*IGd(modSyn==3,seq2m(:,2)+1),2)+...
|
|
Rga(modSyn==3).*(sum(IGq(modSyn==3,seq2m(:,1)+1).*IGq(modSyn==3,seq2m(:,2)+1),2)+sum(IGd(modSyn==3,seq2m(:,1)+1).*IGd(modSyn==3,seq2m(:,2)+1),2)))-...
|
|
Dg(modSyn==3).*w(modSyn==3,i))./Mg(modSyn==3)/i;
|
|
eq1(modSyn==3,i+1)=(-eq1(modSyn==3,i)-(Xgd(modSyn==3)-Xgd1(modSyn==3)).*IGd(modSyn==3,i)+Ef(modSyn==3,i))./Tgd1(modSyn==3)/i;
|
|
RhsEd(modSyn==3)=0;
|
|
RhsEq(modSyn==3)=eq1(modSyn==3,i+1);
|
|
end
|
|
if modelTag(2)>0
|
|
d(modSyn==2,i+1)=(wgb(modSyn==2).*w(modSyn==2,i))/i;
|
|
w(modSyn==2,i+1)=(Pm(modSyn==2,i)-...
|
|
(sum(VGq(modSyn==2,seq2m(:,1)+1).*IGq(modSyn==2,seq2m(:,2)+1),2)+sum(VGd(modSyn==2,seq2m(:,1)+1).*IGd(modSyn==2,seq2m(:,2)+1),2)+...
|
|
Rga(modSyn==2).*(sum(IGq(modSyn==2,seq2m(:,1)+1).*IGq(modSyn==2,seq2m(:,2)+1),2)+sum(IGd(modSyn==2,seq2m(:,1)+1).*IGd(modSyn==2,seq2m(:,2)+1),2)))-...
|
|
Dg(modSyn==2).*w(modSyn==2,i))./Mg(modSyn==2)/i;
|
|
RhsEd(modSyn==2)=0;
|
|
RhsEq(modSyn==2)=eq1(modSyn==2,i+1);
|
|
end
|
|
% this part may be different from DT.% khuang 8 JUL
|
|
AG0=cosp(:,2).*d(:,i+1);
|
|
BG0=sinp(:,2).*d(:,i+1);
|
|
% here multi-convolution is utilized as sine function is
|
|
% approxiamted as a taylor series of delta.% khuang 8 JUL
|
|
if taylorN>=2
|
|
AG0=AG0+cosp(:,3).*sum(d(:,seq2(:,1)+1).*d(:,seq2(:,2)+1),2);
|
|
BG0=BG0+sinp(:,3).*sum(d(:,seq2(:,1)+1).*d(:,seq2(:,2)+1),2);
|
|
end
|
|
if taylorN>=3
|
|
AG0=AG0+cosp(:,4).*sum(d(:,seq3(:,1)+1).*d(:,seq3(:,2)+1).*d(:,seq3(:,3)+1),2);
|
|
BG0=BG0+sinp(:,4).*sum(d(:,seq3(:,1)+1).*d(:,seq3(:,2)+1).*d(:,seq3(:,3)+1),2);
|
|
end
|
|
if taylorN>=4
|
|
seq4=getseq(i,4);
|
|
AG0=AG0+cosp(:,5).*sum(d(:,seq4(:,1)+1).*d(:,seq4(:,2)+1).*d(:,seq4(:,3)+1).*d(:,seq4(:,4)+1),2);
|
|
BG0=BG0+sinp(:,5).*sum(d(:,seq4(:,1)+1).*d(:,seq4(:,2)+1).*d(:,seq4(:,3)+1).*d(:,seq4(:,4)+1),2);
|
|
end
|
|
|
|
% now Sd store high order terms of sin(dta) and Cd for cos(dta),
|
|
% the following sentence is for DT, i commentde it for HE. % khuang 8 JUL
|
|
%Sd(:,i+1) = 1/(i)*sum(repmat([i:-1:1],nSyn,1).*Cd(:,1:i).*d(:,i+1:-1:2),2);
|
|
%Cd(:,i+1) =-1/(i)*sum(repmat([i:-1:1],nSyn,1).*Sd(:,1:i).*d(:,i+1:-1:2),2);
|
|
% high order coefficients of cos(delta) and sin(delta).% khuang 8 JUL
|
|
Cd(:,i+1)=AG0;
|
|
Sd(:,i+1)=BG0;
|
|
|
|
VGdCr=sum(Cd(:,seq2x(:,1)+1).*VGd(:,seq2x(:,2)+1),2);% Vd*cosdta% khuang 8 JUL
|
|
VGqCr=sum(Cd(:,seq2x(:,1)+1).*VGq(:,seq2x(:,2)+1),2);% Vq*cosdta% khuang 8 JUL
|
|
VGdSr=sum(Sd(:,seq2x(:,1)+1).*VGd(:,seq2x(:,2)+1),2);% Vd*sindta% khuang 8 JUL
|
|
VGqSr=sum(Sd(:,seq2x(:,1)+1).*VGq(:,seq2x(:,2)+1),2);% Vq*sindta% khuang 8 JUL
|
|
JCr=sum(Cd(:,seq2x(:,1)+1).*JG(:,seq2x(:,2)+1),2);% similar, for currents% khuang 8 JUL
|
|
KCr=sum(Cd(:,seq2x(:,1)+1).*KG(:,seq2x(:,2)+1),2);
|
|
JSr=sum(Sd(:,seq2x(:,1)+1).*JG(:,seq2x(:,2)+1),2);
|
|
KSr=sum(Sd(:,seq2x(:,1)+1).*KG(:,seq2x(:,2)+1),2);
|
|
|
|
RHSIGxr=-(MatsRs(:,1).*(-VGdSr-VGqCr)+MatsRs(:,2).*(VGdCr-VGqSr))+...
|
|
(MatsR(:,1).*RhsEd+MatsR(:,2).*RhsEq)-(Mats(:,1).*(JSr-KCr)+Mats(:,2).*(JCr+KSr))+(Mats(:,1).*IGdAdd+Mats(:,2).*IGqAdd);
|
|
RHSIGxi=-(MatsRs(:,3).*(-VGdSr-VGqCr)+MatsRs(:,4).*(VGdCr-VGqSr))+...
|
|
(MatsR(:,3).*RhsEd+MatsR(:,4).*RhsEq)-(Mats(:,3).*(JSr-KCr)+Mats(:,4).*(JCr+KSr))+(Mats(:,3).*IGdAdd+Mats(:,4).*IGqAdd);
|
|
% current injections from generators IG.% khuang 8 JUL
|
|
RHSIGr=accumarray(synIdx,RHSIGxr,[nbus,1]);
|
|
RHSIGi=accumarray(synIdx,RHSIGxi,[nbus,1]);
|
|
end
|
|
% update exciter, 3 state variables.% khuang 8 JUL
|
|
if ~isempty(exc)
|
|
Vavrm(:,i+1)=(Vmag(synIdx(excIdx),i)-Vavrm(:,i))./Tavrr/i;
|
|
Vavrr(:,i+1)=(muavr0.*(1-Tavr1./Tavr2).*(Vavrref(:,i)-Vavrm(:,i))-Vavrr(:,i))./Tavr2/i;
|
|
Vavrf(:,i+1)=((vavrf0.*Vmag(synIdx(excIdx),i)+...
|
|
sum(Vavrr(:,seq2m(:,1)+1).*Vmag(synIdx(excIdx),seq2m(:,2)+1),2)+...
|
|
muavr0.*Tavr1./Tavr2.*sum((Vavrref(:,seq2m(:,1)+1)-Vavrm(:,seq2m(:,1)+1)).*Vmag(synIdx(excIdx),seq2m(:,2)+1),2))./Vavr0-Vavrf(:,i))./Tavre/i;
|
|
Ef(excIdx(avrSt==-1),i+1)=0;
|
|
Ef(excIdx(avrSt== 1),i+1)=0;
|
|
Ef(excIdx(avrSt== 0),i+1)=Vavrf(avrSt==0,i+1);
|
|
end
|
|
|
|
% update agc, one state variables.% khuang 8 JUL
|
|
if ~isempty(agc)
|
|
dpg(:,i+1)=-f(:,i).*agcExt(:,4)/i;
|
|
for islIdx=1:nIslands
|
|
busIsland=find(islands==islIdx);
|
|
synTagIsland=synTag(busIsland);
|
|
wIsland=w(synTagIsland(synTagIsland~=0),i+1);
|
|
if ~isempty(wIsland)
|
|
f(busIsland,i+1)=mean(wIsland); % note that here the freq can be different
|
|
end
|
|
end % TODO: steady-state model
|
|
|
|
% update generator participation part from agc.% khuang 8 JUL
|
|
if ~isempty(syn) %dynamic model (synchronous generators)
|
|
if ~isempty(tg)
|
|
Tmech(:,i+1)=Tmech(:,i+1)+dpg(syn(tg(:,1),1),i+1)./numSynOnBus(syn(tg(:,1),1));
|
|
end
|
|
Pm(:,i+1)=Pm(:,i+1)+dpg(syn(:,1),i+1)./numSynOnBus(syn(:,1));
|
|
end
|
|
end
|
|
% update Turbine, 2 state variables.% khuang 8 JUL
|
|
if ~isempty(tg)
|
|
tgovg(:,i+1)=(-(1-Ttg1./Ttg2).*w(tgIdx,i)./Rtg-tgovg(:,i))./Ttg2/i;
|
|
tgovm(:,i+1)=tgovg(:,i+1)-Ttg1./Ttg2.*w(tgIdx,i+1)./Rtg+Tmech(:,i+1);
|
|
|
|
Pm(tgIdx(govSt==0),i+1)=tgovm(govSt==0,i+1);
|
|
Pm(tgIdx(govSt==1),i+1)=0;
|
|
Pm(tgIdx(govSt==-1),i+1)=0;
|
|
end
|
|
|
|
% HEM Body
|
|
RHS1=sum((-P(:,seq2(:,1)+1)+1j*(Q(:,seq2(:,1)+1)+Qxtra(:,seq2(:,1)+1))).*conj(W(:,seq2(:,2)+1)),2)+...
|
|
freqKeptTag.*sum(-dpg(:,seq2(:,1)+1).*conj(W(:,seq2(:,2)+1)),2)+...
|
|
freqKeptTag.*fdk.*sum(f(:,seq2R(:,1)+1).*conj(W(:,seq2R(:,2)+1)),2)+Ysh1.*V(:,i)+Ytr1*V(:,i);
|
|
RHS2=-0.5*real(sum(V(:,seq2R(:,1)+1).*conj(V(:,seq2R(:,2)+1)),2));
|
|
RHS3=sum(-W(:,seq2R(:,1)+1).*V(:,seq2R(:,2)+1),2);
|
|
|
|
|
|
if i==1
|
|
RHS2=RHS2+0.5*VspSq2(:,2);
|
|
end
|
|
|
|
compactRHS1=RHS1(busType~=2);
|
|
compactRHS1=compactRHS1+Y(busType~=2,isw)*real(V(isw,i+1));
|
|
% combine all current injection involing Motor, zip load, and
|
|
% Generators.% khuang 8 JUL
|
|
RHS=[real(compactRHS1)+RHSILr(busType~=2)+RHSIiLr(busType~=2)-RHSIGr(busType~=2);...
|
|
imag(compactRHS1)+RHSILi(busType~=2)+RHSIiLi(busType~=2)-RHSIGi(busType~=2);...
|
|
RHS2(ipv);...
|
|
real(RHS3(busType~=2));...
|
|
imag(RHS3(busType~=2));...
|
|
zeros(sum(freqKeptTagxRef),1);...
|
|
zeros(size(idxNonSwD,1),1)];
|
|
% solve AE, notice that every time we need to solve Ax(k) =b(k), which
|
|
% means that A in invariant for every order. so we only need to rebulid
|
|
% b every iteration.% khuang 8 JUL
|
|
if useLU
|
|
if IS_OCTAVE
|
|
x = real(MxQ * MxQx* (MxU \ (MxL \ (MxP * RHS)))) ;
|
|
else
|
|
x =real( MxQ * (MxU \ (MxL \ (MxP * RHS)))) ;
|
|
end
|
|
else
|
|
x=real(LHS_mat\RHS);
|
|
end
|
|
|
|
% x= [V;W;Q_pv;f]
|
|
xC=real(V(:,i+1));
|
|
xD=imag(V(:,i+1));
|
|
xC(idxNonSw)=x(1:(npq+npv));
|
|
xD(idxNonSw)=x(((npq+npv)+1):(2*(npq+npv)));
|
|
V(:,i+1)=xC+1j*xD;
|
|
W(busType~=2,i+1)=x((2*(npq+npv)+1):(3*(npq+npv)))+...
|
|
1j*x((3*(npq+npv)+1):(4*(npq+npv)));
|
|
Q(ipv,i+1)=x((4*(npq+npv)+1):(4*(npq+npv)+npv));
|
|
f(freqKeptTag==1,i+1)=x((4*(npq+npv)+npv+1):end);
|
|
|
|
Vmag(:,i+1)=(sum(V(:,seq2(:,1)+1).*conj(V(:,seq2(:,2)+1)),2)-sum(Vmag(:,seq2R(:,1)+1).*Vmag(:,seq2R(:,2)+1),2))./Vmag(:,1)/2; % Calculate voltage magnitude
|
|
|
|
% now update the Algebric variables for motors:IL,IR,VM.% khuang 8 JUL
|
|
if ~isempty(ind)
|
|
% for j=1:nInd
|
|
% tempIL=squeeze(LHS_MatInd_Shr(j,:,:))*[real(V(indIdx(j),i+1));imag(V(indIdx(j),i+1))]+rhsBus(:,j);
|
|
% tempIRs=-LHS_MatInd_Shr2{j}*[tempIL;real(V(indIdx(j),i+1));imag(V(indIdx(j),i+1))];
|
|
% IL(j,i+1)=tempIL(1)+1j*tempIL(2);
|
|
% IR(j,i+1)=tempIRs(1)+1j*tempIRs(2);
|
|
% Vm(j,i+1)=V(indIdx(j),i+1)-IL(j,i+1)*Z1(j);
|
|
% end
|
|
tempILvr=LHS_MatInd_Shr_sqz(:,1).*real(V(indIdx,i+1))+LHS_MatInd_Shr_sqz(:,3).*imag(V(indIdx,i+1))+rhsBus(1,:)';
|
|
tempILvi=LHS_MatInd_Shr_sqz(:,2).*real(V(indIdx,i+1))+LHS_MatInd_Shr_sqz(:,4).*imag(V(indIdx,i+1))+rhsBus(2,:)';
|
|
tempIRsvr=-sum(LHS_MatInd_Shr2_sqz(:,[1,3,5,7]).*[tempILvr,tempILvi,real(V(indIdx,i+1)),imag(V(indIdx,i+1))],2);
|
|
tempIRsvi=-sum(LHS_MatInd_Shr2_sqz(:,[2,4,6,8]).*[tempILvr,tempILvi,real(V(indIdx,i+1)),imag(V(indIdx,i+1))],2);
|
|
IL(:,i+1)=tempILvr+1j*tempILvi;
|
|
IR(:,i+1)=tempIRsvr+1j*tempIRsvi;
|
|
Vm(:,i+1)=V(indIdx,i+1)-IL(:,i+1).*Z1;
|
|
end
|
|
|
|
% now update the Algebric variables for ZIP loads.% khuang 8 JUL
|
|
if ~isempty(zip)
|
|
IiL(:,i+1)=(LHS_MatZip(:,1)+1j*LHS_MatZip(:,3)).*real(V(zipIdx,i+1))+(LHS_MatZip(:,2)+1j*LHS_MatZip(:,4)).*imag(V(zipIdx,i+1))+(RHSILr_full+1j*RHSILi_full);
|
|
BiL(:,i+1)=Mat_BZip(:,1).*real(V(zipIdx,i+1))+Mat_BZip(:,2).*imag(V(zipIdx,i+1))+RHS_BZip;
|
|
end
|
|
|
|
% now update the Algebric variables for Generators: Vd,Vq,Id,Iq.% khuang 8 JUL
|
|
if ~isempty(syn)
|
|
JG(:,i+1)=-MatsRs(:,1).*real(V(synIdx,i+1))-MatsRs(:,2).*imag(V(synIdx,i+1))+RHSIGxr;
|
|
KG(:,i+1)=-MatsRs(:,3).*real(V(synIdx,i+1))-MatsRs(:,4).*imag(V(synIdx,i+1))+RHSIGxi;
|
|
IGd(:,i+1)=JSr-KCr+sind.*JG(:,i+1)-cosd.*KG(:,i+1);
|
|
IGq(:,i+1)=JCr+KSr+cosd.*JG(:,i+1)+sind.*KG(:,i+1);
|
|
tempVGC=real(V(synIdx,i+1))-VGdSr-VGqCr;
|
|
tempVGD=imag(V(synIdx,i+1))+VGdCr-VGqSr;
|
|
VGd(:,i+1)=sind.*tempVGC-cosd.*tempVGD;
|
|
VGq(:,i+1)=cosd.*tempVGC+sind.*tempVGD;
|
|
end
|
|
end
|
|
|
|
% Output value: coefficients for every order.% khuang 8 JUL
|
|
Q=real(Q);
|
|
s=real(s);
|
|
d=real(d);
|
|
w=real(w);
|
|
eq1=real(eq1);
|
|
eq2=real(eq2);
|
|
ed1=real(ed1);
|
|
ed2=real(ed2);
|
|
psid=real(psid);
|
|
psiq=real(psiq);
|
|
Pm=real(Pm);
|
|
Ef=real(Ef);
|
|
Vavrm=real(Vavrm);
|
|
Vavrr=real(Vavrr);
|
|
Vavrf=real(Vavrf);
|
|
Vavrref=real(Vavrref);
|
|
tgovg=real(tgovg);
|
|
tgovm=real(tgovm);
|
|
Tmech=real(Tmech);
|
|
f=real(f);
|
|
dpg=real(dpg);
|
|
qplt=real(qplt);
|
|
vg=real(vg);
|
|
|
|
if ~isempty(exc)
|
|
avr={Vavrm,Vavrr,Vavrf};
|
|
end
|
|
|
|
if ~isempty(tg)
|
|
gov={tgovg,tgovm};
|
|
end
|
|
end |