This repository has been archived on 2022-08-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
multirow/lifting/library/src/lifting.c

296 lines
8.1 KiB
C

/* Copyright (c) 2015 Alinson Xavier
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _XOPEN_SOURCE 700
#include <math.h>
#include <stdio.h>
#include <multirow/double.h>
#include <multirow/util.h>
#include <multirow/lp.h>
#include <multirow/lfree2d.h>
#include <lifting/lifting.h>
/**
* Verifies if the set is well formed.
*/
int LIFTING_2D_verify(struct LFreeSet2D *set)
{
int rval = 0;
abort_if(set->n_halfspaces == 0, "Halfspaces not found");
for(int i = 0; i < set->n_lattice_points; i++)
{
double *t = &set->lattice_points[2 * i];
double r[2] = {t[0] - set->f[0],
t[1] - set->f[1]};
double value;
rval = LIFTING_2D_psi(set->n_halfspaces, set->halfspaces, r, &value);
abort_if(rval, "LIFTING_2D_psi failed");
double delta = fabs(value - 1);
if(delta > 0.0001)
{
log_debug("Lattice point (%.2lf, %.2lf) is "
"not on the boundary (delta=%.6lf)", t[0], t[1], delta);
rval = 1;
goto CLEANUP;
}
}
CLEANUP:
return rval;
}
int LIFTING_2D_psi(int n_halfspaces,
const double *halfspaces,
const double *ray,
double *value)
{
int rval = 0;
*value = -INFINITY;
for(int i = 0; i < n_halfspaces; i++)
{
const double *h = &halfspaces[2 * i];
double v = ray[0] * h[0] + ray[1] * h[1];
*value = DOUBLE_max(v, *value);
}
CLEANUP:
return rval;
}
int LIFTING_2D_optimize_continuous(int n_halfspaces,
const double *halfspaces,
double alpha2,
double *alpha1,
double *value)
{
int rval = 0;
*value = -INFINITY;
for(int r = 0; r < n_halfspaces; r++)
{
for(int s = r+1; s < n_halfspaces; s++)
{
const double *ar = &halfspaces[r * 2];
const double *as = &halfspaces[s * 2];
double xr = ar[0];
double xs = as[0];
if(DOUBLE_eq(xr, xs)) continue;
double br = - xs / (xr - xs);
double bs = xr / (xr - xs);
if(!DOUBLE_geq(br, 0)) continue;
if(!DOUBLE_geq(bs, 0)) continue;
double yr = ar[1] * alpha2;
double ys = as[1] * alpha2;
double obj = yr * br + ys * bs;
if(DOUBLE_geq(obj, *value))
{
*value = obj;
if(DOUBLE_neq(xr, 0))
*alpha1 = - (yr - obj) / xr;
else
*alpha1 = - (ys - obj) / xs;
}
}
}
CLEANUP:
return rval;
}
int LIFTING_2D_lift_fixed(int n_halfspaces,
const double *halfspaces,
const double *ray,
double k1,
double *opt)
{
int rval = 0;
double k0;
double value;
rval = LIFTING_2D_optimize_continuous(n_halfspaces, halfspaces,
ray[1] + k1, &k0, &value);
abort_if(rval, "LIFTING_2D_optimize_continuous failed");
double delta = k0 - ray[0];
double r_ceil[2] = { ray[0] + ceil(delta), ray[1] + k1 };
double r_floor[2] = { ray[0] + floor(delta), ray[1] + k1 };
log_debug(" delta=%.6lf value=%.6lf\n", delta, value);
log_debug(" r_ceil=%12.6lf %12.6lf\n", r_ceil[0], r_ceil[1]);
log_debug(" r_floor=%12.6lf %12.6lf\n", r_floor[0], r_floor[1]);
double value_ceil, value_floor;
rval = LIFTING_2D_psi(n_halfspaces, halfspaces, r_ceil, &value_ceil);
abort_if(rval, "LIFTING_2D_psi failed");
rval = LIFTING_2D_psi(n_halfspaces, halfspaces, r_floor, &value_floor);
abort_if(rval, "LIFTING_2D_psi failed");
*opt = min(value_ceil, value_floor);
CLEANUP:
return rval;
}
int LIFTING_2D_naive(int n_halfspaces,
const double *halfspaces,
const double *ray,
const int *lb,
const int *ub,
double *value)
{
int rval = 0;
*value = INFINITY;
int best_k0 = 0;
int best_k1 = 0;
int margin = 10;
for(int k0 = lb[0] - margin; k0 <= ub[0] + margin; k0++)
{
for(int k1 = lb[1] - margin; k1 <= ub[1] + margin; k1++)
{
double q[2] = { ray[0] + k0, ray[1] + k1 };
double value_q;
rval = LIFTING_2D_psi(n_halfspaces, halfspaces, q, &value_q);
abort_if(rval, "LIFTING_2D_ps failed");
if(value_q < *value)
{
best_k0 = k0;
best_k1 = k1;
*value = value_q;
log_debug(" k=%6d %6d value=%12.6lf\n", k0, k1, *value);
}
}
}
// log_debug(" best_k=(%d %d) value=%.6lf\n", best_k0, best_k1, *value);
CLEANUP:
return rval;
}
int LIFTING_2D_heur(int n_halfspaces,
const double *halfspaces,
const double *ray,
double *value)
{
int rval = 0;
double q[2] = { ray[0] - ceil(ray[0]), ray[1] - ceil(ray[1])};
rval = LIFTING_2D_psi(n_halfspaces, halfspaces, q, value);
abort_if(rval, "LIFTING_2D_ps failed");
CLEANUP:
return rval;
}
int LIFTING_2D_bound(int n_halfspaces,
const double *halfspaces,
const double *ray,
const double xi_plus,
const double xi_minus,
double *value)
{
int rval = 0;
double eta_star, eta_plus, eta_minus;
double m_plus, m_minus;
double ignored;
int k1 = 1;
rval = LIFTING_2D_lift_fixed(n_halfspaces, halfspaces, ray, 0, &eta_star);
abort_if(rval, "LIFTING_2D_lift_fixed failed");
m_plus = m_minus = INFINITY;
log_debug("Level 0:\n");
log_debug(" eta star = %.6lf\n", eta_star);
log_debug(" next slack plus = %.6lf\n", k1 + ray[1] - m_plus);
log_debug(" next slack minus = %.6lf\n", k1 - ray[1] - m_minus);
log_debug(" xi plus = %.6lf\n", xi_plus);
log_debug(" xi minus = %.6lf\n", xi_minus);
while((k1 <= fabs(ray[1])) || (k1 + ray[1] <= m_plus) || (k1 - ray[1] <= m_minus))
{
log_debug("Level %d:\n", k1);
double h_plus, h_minus;
rval = LIFTING_2D_optimize_continuous(n_halfspaces, halfspaces, ray[1]
+ k1, &ignored, &h_plus);
abort_if(rval, "LIFTING_2D_optimize_continuous failed");
rval = LIFTING_2D_optimize_continuous(n_halfspaces, halfspaces, ray[1]
- k1, &ignored, &h_minus);
abort_if(rval, "LIFTING_2D_optimize_continuous failed");
rval = LIFTING_2D_lift_fixed(n_halfspaces, halfspaces, ray, k1,
&eta_plus);
abort_if(rval, "LIFTING_2D_lift_fixed failed");
rval = LIFTING_2D_lift_fixed(n_halfspaces, halfspaces, ray, -k1,
&eta_minus);
abort_if(rval, "LIFTING_2D_lift_fixed failed");
eta_star = fmin(eta_star, fmin(eta_plus, eta_minus));
m_plus = ceil(eta_star / xi_plus);
m_minus = ceil(eta_star / xi_minus);
log_debug(" eta plus = %.6lf\n", eta_plus);
log_debug(" eta minus = %.6lf\n", eta_minus);
log_debug(" eta star = %.6lf\n", eta_star);
log_debug(" h minus = %.6lf\n", h_minus);
log_debug(" h plus = %.6lf\n", h_plus);
k1++;
log_debug(" next slack plus = %.6lf\n", k1 + ray[1] - m_plus);
log_debug(" next slack minus = %.6lf\n", k1 - ray[1] - m_minus);
}
log_debug("Done\n");
*value = eta_star;
CLEANUP:
return rval;
}