mirror of
https://github.com/ANL-CEEESA/LLEPE.git
synced 2025-12-06 01:48:53 -06:00
Added docs and generalized to multiple species
This commit is contained in:
1
tests/multi_ree_settings.txt
Normal file
1
tests/multi_ree_settings.txt
Normal file
@@ -0,0 +1 @@
|
||||
{"exp_csv_filename": "../data/csvs/Nd_exp_data.csv", "phases_xml_filename": "../data/xmls/twophase.xml", "opt_dict": {"Nd(H(A)2)3(org)": {"h0": -4662344.6400}}, "phase_names": ["HCl_electrolyte", "PC88A_liquid"], "aq_solvent_name": "H2O(L)", "extractant_name": "(HA)2(org)", "diluant_name": "dodecane", "complex_names": ["Nd(H(A)2)3(org)"], "rare_earth_ion_names": ["Nd+++"], "aq_solvent_rho": 1000.0, "extractant_rho": 960.0, "diluant_rho": 750.0}
|
||||
53
tests/test_multi_reeps.py
Normal file
53
tests/test_multi_reeps.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import pyswarms as ps
|
||||
import sys
|
||||
sys.path.append('../')
|
||||
from reeps import REEPS1
|
||||
|
||||
with open('multi_ree_settings.txt') as file:
|
||||
testing_params = json.load(file)
|
||||
|
||||
beaker = REEPS1(**testing_params)
|
||||
|
||||
|
||||
# def new_obj(predicted_dict, meas_df, epsilon):
|
||||
# meas_cols = list(meas_df)
|
||||
# pred_keys = list(predicted_dict.keys())
|
||||
# meas = meas_df[meas_cols[2]]
|
||||
# pred = (predicted_dict['re_org'] + epsilon) / (predicted_dict['re_aq'] + epsilon)
|
||||
# log_pred = np.log10(pred)
|
||||
# log_meas = np.log10(meas)
|
||||
# obj = np.sum((log_pred - log_meas) ** 2)
|
||||
# return obj
|
||||
# #
|
||||
# #
|
||||
# # def new_obj(ping):
|
||||
# # print(ping)
|
||||
# beaker.set_objective_function(new_obj)
|
||||
# objective_kwargs = {"epsilon": 1e-14}
|
||||
# beaker.set
|
||||
# noinspection PyUnusedLocal
|
||||
def optimizer(func, x_guess):
|
||||
lb = np.array([1e-1])
|
||||
ub = np.array([1e1])
|
||||
bounds = (lb, ub)
|
||||
options = {'c1': 1e-3, 'c2': 1e-3, 'w': 0.9}
|
||||
mini_optimizer = ps.single.global_best.GlobalBestPSO(n_particles=100, dimensions=1,
|
||||
options=options, bounds=bounds)
|
||||
f_opt, x_opt = mini_optimizer.optimize(func, iters=100)
|
||||
|
||||
return x_opt
|
||||
|
||||
|
||||
minimizer_kwargs = {"method": 'SLSQP',
|
||||
"bounds": [(1e-1, 1e1)],
|
||||
"constraints": (),
|
||||
"options": {'disp': True, 'maxiter': 1000, 'ftol': 1e-6}}
|
||||
# est_enthalpy = beaker.fit(optimizer=optimizer)
|
||||
est_enthalpy = beaker.fit()
|
||||
print(est_enthalpy)
|
||||
|
||||
# beaker.update_xml(est_enthalpy)
|
||||
# beaker.parity_plot()
|
||||
# print(beaker.r_squared())
|
||||
Reference in New Issue
Block a user