Add gmi_dual

feature/replay^2
Alinson S. Xavier 1 year ago
parent 1c204d765e
commit 00fe4d07d2
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -11,6 +11,7 @@ include("tableau/structs.jl")
# include("blackbox/cplex.jl")
include("tableau/numerics.jl")
include("tableau/gmi.jl")
include("tableau/gmi_dual.jl")
include("tableau/moi.jl")
include("tableau/tableau.jl")
include("tableau/transform.jl")

@ -16,7 +16,6 @@ function collect_gmi(
max_cuts_per_round = 100,
atol = 1e-4,
)
@info mps_filename
reset_timer!()
# Open HDF5 file

@ -0,0 +1,323 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Printf
using JuMP
Base.@kwdef mutable struct ConstraintSet_v2
lhs::SparseMatrixCSC
ub::Vector{Float64}
lb::Vector{Float64}
Bss::Vector{Basis}
Bv::Vector{Int64}
end
function collect_gmi_dual(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 500,
)
reset_timer!()
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = h5.get_scalar("lp_obj_value")
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
stats_time_dual = 0
stats_time_dual_2 = 0
all_cuts = nothing
all_cuts_v2 = nothing
cuts_all = nothing
cuts_all_v2 = nothing
original_basis = nothing
# Read problem
model = read_from_file(mps_filename)
# Read original objective function
or_obj_f = objective_function(model)
revised_obj = objective_function(model)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Update objective function
set_objective_function(model, revised_obj)
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s) + data_s.obj_offset
if round == 1
# Assert standard form problem has same value as original
assert_eq(obj, obj_lp)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Store original basis and select tableau rows
basis = get_basis(model_s)
if round == 1
original_basis = basis
end
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
continue
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
if round == 1
cuts_all = cuts
basis_vec = repeat([basis], length(selected_rows))
cuts_all_v2 =
ConstraintSet_v2(cuts.lhs, cuts.ub, cuts.lb, basis_vec, selected_rows)
else
# v1 struct
cuts_all.lb = [cuts_all.lb; cuts.lb]
cuts_all.ub = [cuts_all.ub; cuts.ub]
cuts_all.lhs = [cuts_all.lhs; cuts.lhs]
# v2 struct
cuts_all_v2.lb = [cuts_all_v2.lb; cuts.lb]
cuts_all_v2.ub = [cuts_all_v2.ub; cuts.ub]
cuts_all_v2.lhs = [cuts_all_v2.lhs; cuts.lhs]
cuts_all_v2.Bss = [cuts_all_v2.Bss; repeat([basis], length(selected_rows))]
cuts_all_v2.Bv = [cuts_all_v2.Bv; selected_rows]
end
constrs, gmi_exps = add_constraint_set_dual_v2(model, cuts_all)
# Optimize original form
set_objective_function(model, or_obj_f)
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Reoptimize with updated obj function
stats_time_dual += @elapsed begin
revised_obj = (
or_obj_f - sum(
shadow_price(c) * gmi_exps[iz] for (iz, c) in enumerate(constrs)
)
)
delete.(model, constrs)
set_objective_function(model, revised_obj)
set_optimizer(model, optimizer)
optimize!(model)
n_obj = objective_value(model)
@assert obj n_obj
end
undo_relax()
end
# Filter out useless cuts
stats_time_dual_2 += @elapsed begin
set_objective_function(model, or_obj_f)
keep = []
obj_gmi = obj_lp
if (cuts_all !== nothing)
constrs, gmi_exps = add_constraint_set_dual_v2(model, cuts_all)
for (i, c) in enumerate(constrs)
set_name(c, @sprintf("gomory_%05d", i))
end
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
obj_gmi = obj
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [-shadow_price(c) > 1e-3 for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
all_cuts = ConstraintSet(;
lhs = cuts_all.lhs[keep, :],
lb = cuts_all.lb[keep],
ub = cuts_all.ub[keep],
)
all_cuts_v2 = ConstraintSet_v2(;
lhs = cuts_all_v2.lhs[keep, :],
lb = cuts_all_v2.lb[keep],
ub = cuts_all_v2.ub[keep],
Bss = cuts_all_v2.Bss[keep],
Bv = cuts_all_v2.Bv[keep],
)
delete.(model, constrs[drop])
undo_relax()
end
end
basis = original_basis
cut_sizezz = length(all_cuts_v2.Bv)
var_totall =
length(basis.var_basic) +
length(basis.var_nonbasic) +
length(basis.constr_basic) +
length(basis.constr_nonbasic)
bm_size = Array{Int64,2}(undef, cut_sizezz, 4)
basis_matrix = Array{Int64,2}(undef, cut_sizezz, var_totall)
for ii = 1:cut_sizezz
vb = all_cuts_v2.Bss[ii].var_basic
vn = all_cuts_v2.Bss[ii].var_nonbasic
cb = all_cuts_v2.Bss[ii].constr_basic
cn = all_cuts_v2.Bss[ii].constr_nonbasic
bm_size[ii, :] = [length(vb) length(vn) length(cb) length(cn)]
basis_matrix[ii, :] = [vb' vn' cb' cn']
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.put_array("cuts_basis_vars", basis_matrix)
h5.put_array("cuts_basis_sizes", bm_size)
h5.put_array("cuts_rows", all_cuts_v2.Bv)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"time_dual" => stats_time_dual,
"time_dual_2" => stats_time_dual_2,
"obj_mip" => obj_mip,
"obj_lp" => obj_lp,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => length(keep),
)
end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, ncols = size(cs.lhs)
constrs = []
gmi_exps = []
for i = 1:nrows
c = nothing
gmi_exp = nothing
gmi_exp2 = nothing
expr = @expression(model, sum(cs.lhs[i, j] * vars[j] for j = 1:ncols))
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= expr)
gmi_exp = cs.lb[i] - expr
elseif isinf(cs.lb[i])
c = @constraint(model, expr <= cs.ub[i])
gmi_exp = expr - cs.ub[i]
else
c = @constraint(model, cs.lb[i] <= expr <= cs.ub[i])
gmi_exp = cs.lb[i] - expr
gmi_exp2 = expr - cs.ub[i]
end
push!(constrs, c)
push!(gmi_exps, gmi_exp)
if !isnothing(gmi_exp2)
push!(gmi_exps, gmi_exp2)
end
end
return constrs, gmi_exps
end
export collect_gmi_dual

@ -0,0 +1,22 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using HiGHS
function test_cuts_tableau_gmi_dual()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_basis_vars = h5.get_array("cuts_basis_vars")
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
cuts_rows = h5.get_array("cuts_rows")
@test size(cuts_basis_vars) == (15, 402)
@test size(cuts_basis_sizes) == (15,4)
@test size(cuts_rows) == (15,)
finally
h5.close()
end
end

@ -20,6 +20,7 @@ include("components/test_cuts.jl")
include("components/test_lazy.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("Cuts/tableau/test_gmi.jl")
include("Cuts/tableau/test_gmi_dual.jl")
include("problems/test_setcover.jl")
include("problems/test_stab.jl")
include("problems/test_tsp.jl")

@ -33,7 +33,7 @@ function test_cuts()
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
stats = solver.optimize(
model, stats = solver.optimize(
data_filenames[1],
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
)

@ -36,7 +36,7 @@ function test_lazy()
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
stats = solver.optimize(
model, stats = solver.optimize(
data_filenames[1],
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
)

Loading…
Cancel
Save