parent
1c204d765e
commit
00fe4d07d2
@ -0,0 +1,323 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Printf
|
||||
using JuMP
|
||||
|
||||
Base.@kwdef mutable struct ConstraintSet_v2
|
||||
lhs::SparseMatrixCSC
|
||||
ub::Vector{Float64}
|
||||
lb::Vector{Float64}
|
||||
Bss::Vector{Basis}
|
||||
Bv::Vector{Int64}
|
||||
end
|
||||
|
||||
function collect_gmi_dual(
|
||||
mps_filename;
|
||||
optimizer,
|
||||
max_rounds = 10,
|
||||
max_cuts_per_round = 500,
|
||||
)
|
||||
reset_timer!()
|
||||
|
||||
# Open HDF5 file
|
||||
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||
h5 = H5File(h5_filename)
|
||||
|
||||
# Read optimal solution
|
||||
sol_opt_dict = Dict(
|
||||
zip(
|
||||
h5.get_array("static_var_names"),
|
||||
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||
),
|
||||
)
|
||||
|
||||
# Read optimal value
|
||||
obj_mip = h5.get_scalar("mip_lower_bound")
|
||||
if obj_mip === nothing
|
||||
obj_mip = h5.get_scalar("mip_obj_value")
|
||||
end
|
||||
obj_lp = h5.get_scalar("lp_obj_value")
|
||||
h5.file.close()
|
||||
|
||||
# Define relative MIP gap
|
||||
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
||||
|
||||
# Initialize stats
|
||||
stats_obj = []
|
||||
stats_gap = []
|
||||
stats_ncuts = []
|
||||
stats_time_convert = 0
|
||||
stats_time_solve = 0
|
||||
stats_time_select = 0
|
||||
stats_time_tableau = 0
|
||||
stats_time_gmi = 0
|
||||
stats_time_dual = 0
|
||||
stats_time_dual_2 = 0
|
||||
all_cuts = nothing
|
||||
all_cuts_v2 = nothing
|
||||
cuts_all = nothing
|
||||
cuts_all_v2 = nothing
|
||||
original_basis = nothing
|
||||
|
||||
# Read problem
|
||||
model = read_from_file(mps_filename)
|
||||
|
||||
# Read original objective function
|
||||
or_obj_f = objective_function(model)
|
||||
revised_obj = objective_function(model)
|
||||
|
||||
for round = 1:max_rounds
|
||||
@info "Round $(round)..."
|
||||
|
||||
stats_time_convert = @elapsed begin
|
||||
# Update objective function
|
||||
set_objective_function(model, revised_obj)
|
||||
|
||||
# Extract problem data
|
||||
data = ProblemData(model)
|
||||
|
||||
# Construct optimal solution vector (with correct variable sequence)
|
||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||
|
||||
# Assert optimal solution is feasible for the original problem
|
||||
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||
|
||||
# Convert to standard form
|
||||
data_s, transforms = convert_to_standard_form(data)
|
||||
model_s = to_model(data_s)
|
||||
set_optimizer(model_s, optimizer)
|
||||
relax_integrality(model_s)
|
||||
|
||||
# Convert optimal solution to standard form
|
||||
sol_opt_s = forward(transforms, sol_opt)
|
||||
|
||||
# Assert converted solution is feasible for standard form problem
|
||||
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||
|
||||
end
|
||||
|
||||
# Optimize standard form
|
||||
optimize!(model_s)
|
||||
stats_time_solve += solve_time(model_s)
|
||||
obj = objective_value(model_s) + data_s.obj_offset
|
||||
|
||||
if round == 1
|
||||
# Assert standard form problem has same value as original
|
||||
assert_eq(obj, obj_lp)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
push!(stats_ncuts, 0)
|
||||
end
|
||||
if termination_status(model_s) != MOI.OPTIMAL
|
||||
return
|
||||
end
|
||||
|
||||
# Store original basis and select tableau rows
|
||||
basis = get_basis(model_s)
|
||||
if round == 1
|
||||
original_basis = basis
|
||||
end
|
||||
sol_frac = get_x(model_s)
|
||||
stats_time_select += @elapsed begin
|
||||
selected_rows =
|
||||
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
||||
end
|
||||
|
||||
# Compute selected tableau rows
|
||||
stats_time_tableau += @elapsed begin
|
||||
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
|
||||
|
||||
# Assert tableau rows have been computed correctly
|
||||
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
|
||||
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
||||
|
||||
end
|
||||
|
||||
# Compute GMI cuts
|
||||
stats_time_gmi += @elapsed begin
|
||||
cuts_s = compute_gmi(data_s, tableau)
|
||||
|
||||
# Assert cuts have been generated correctly
|
||||
assert_cuts_off(cuts_s, sol_frac)
|
||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||
|
||||
# Abort if no cuts are left
|
||||
if length(cuts_s.lb) == 0
|
||||
@info "No cuts generated. Aborting."
|
||||
continue
|
||||
end
|
||||
end
|
||||
|
||||
# Add GMI cuts to original problem
|
||||
cuts = backwards(transforms, cuts_s)
|
||||
if round == 1
|
||||
cuts_all = cuts
|
||||
basis_vec = repeat([basis], length(selected_rows))
|
||||
cuts_all_v2 =
|
||||
ConstraintSet_v2(cuts.lhs, cuts.ub, cuts.lb, basis_vec, selected_rows)
|
||||
else
|
||||
# v1 struct
|
||||
cuts_all.lb = [cuts_all.lb; cuts.lb]
|
||||
cuts_all.ub = [cuts_all.ub; cuts.ub]
|
||||
cuts_all.lhs = [cuts_all.lhs; cuts.lhs]
|
||||
|
||||
# v2 struct
|
||||
cuts_all_v2.lb = [cuts_all_v2.lb; cuts.lb]
|
||||
cuts_all_v2.ub = [cuts_all_v2.ub; cuts.ub]
|
||||
cuts_all_v2.lhs = [cuts_all_v2.lhs; cuts.lhs]
|
||||
cuts_all_v2.Bss = [cuts_all_v2.Bss; repeat([basis], length(selected_rows))]
|
||||
cuts_all_v2.Bv = [cuts_all_v2.Bv; selected_rows]
|
||||
end
|
||||
constrs, gmi_exps = add_constraint_set_dual_v2(model, cuts_all)
|
||||
|
||||
# Optimize original form
|
||||
set_objective_function(model, or_obj_f)
|
||||
set_optimizer(model, optimizer)
|
||||
undo_relax = relax_integrality(model)
|
||||
optimize!(model)
|
||||
obj = objective_value(model)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
|
||||
# Reoptimize with updated obj function
|
||||
stats_time_dual += @elapsed begin
|
||||
revised_obj = (
|
||||
or_obj_f - sum(
|
||||
shadow_price(c) * gmi_exps[iz] for (iz, c) in enumerate(constrs)
|
||||
)
|
||||
)
|
||||
delete.(model, constrs)
|
||||
set_objective_function(model, revised_obj)
|
||||
set_optimizer(model, optimizer)
|
||||
optimize!(model)
|
||||
n_obj = objective_value(model)
|
||||
@assert obj ≈ n_obj
|
||||
end
|
||||
undo_relax()
|
||||
end
|
||||
|
||||
# Filter out useless cuts
|
||||
stats_time_dual_2 += @elapsed begin
|
||||
set_objective_function(model, or_obj_f)
|
||||
keep = []
|
||||
obj_gmi = obj_lp
|
||||
if (cuts_all !== nothing)
|
||||
constrs, gmi_exps = add_constraint_set_dual_v2(model, cuts_all)
|
||||
for (i, c) in enumerate(constrs)
|
||||
set_name(c, @sprintf("gomory_%05d", i))
|
||||
end
|
||||
set_optimizer(model, optimizer)
|
||||
undo_relax = relax_integrality(model)
|
||||
optimize!(model)
|
||||
obj = objective_value(model)
|
||||
obj_gmi = obj
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
|
||||
# Store useful cuts; drop useless ones from the problem
|
||||
useful = [-shadow_price(c) > 1e-3 for c in constrs]
|
||||
drop = findall(useful .== false)
|
||||
keep = findall(useful .== true)
|
||||
all_cuts = ConstraintSet(;
|
||||
lhs = cuts_all.lhs[keep, :],
|
||||
lb = cuts_all.lb[keep],
|
||||
ub = cuts_all.ub[keep],
|
||||
)
|
||||
all_cuts_v2 = ConstraintSet_v2(;
|
||||
lhs = cuts_all_v2.lhs[keep, :],
|
||||
lb = cuts_all_v2.lb[keep],
|
||||
ub = cuts_all_v2.ub[keep],
|
||||
Bss = cuts_all_v2.Bss[keep],
|
||||
Bv = cuts_all_v2.Bv[keep],
|
||||
)
|
||||
|
||||
delete.(model, constrs[drop])
|
||||
undo_relax()
|
||||
end
|
||||
end
|
||||
basis = original_basis
|
||||
|
||||
cut_sizezz = length(all_cuts_v2.Bv)
|
||||
var_totall =
|
||||
length(basis.var_basic) +
|
||||
length(basis.var_nonbasic) +
|
||||
length(basis.constr_basic) +
|
||||
length(basis.constr_nonbasic)
|
||||
bm_size = Array{Int64,2}(undef, cut_sizezz, 4)
|
||||
basis_matrix = Array{Int64,2}(undef, cut_sizezz, var_totall)
|
||||
|
||||
for ii = 1:cut_sizezz
|
||||
vb = all_cuts_v2.Bss[ii].var_basic
|
||||
vn = all_cuts_v2.Bss[ii].var_nonbasic
|
||||
cb = all_cuts_v2.Bss[ii].constr_basic
|
||||
cn = all_cuts_v2.Bss[ii].constr_nonbasic
|
||||
bm_size[ii, :] = [length(vb) length(vn) length(cb) length(cn)]
|
||||
basis_matrix[ii, :] = [vb' vn' cb' cn']
|
||||
end
|
||||
|
||||
# Store cuts
|
||||
if all_cuts !== nothing
|
||||
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||
h5 = H5File(h5_filename)
|
||||
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||
h5.put_array("cuts_lb", all_cuts.lb)
|
||||
h5.put_array("cuts_ub", all_cuts.ub)
|
||||
h5.put_array("cuts_basis_vars", basis_matrix)
|
||||
h5.put_array("cuts_basis_sizes", bm_size)
|
||||
h5.put_array("cuts_rows", all_cuts_v2.Bv)
|
||||
h5.file.close()
|
||||
end
|
||||
|
||||
return OrderedDict(
|
||||
"instance" => mps_filename,
|
||||
"max_rounds" => max_rounds,
|
||||
"rounds" => length(stats_obj) - 1,
|
||||
"time_convert" => stats_time_convert,
|
||||
"time_solve" => stats_time_solve,
|
||||
"time_tableau" => stats_time_tableau,
|
||||
"time_gmi" => stats_time_gmi,
|
||||
"time_dual" => stats_time_dual,
|
||||
"time_dual_2" => stats_time_dual_2,
|
||||
"obj_mip" => obj_mip,
|
||||
"obj_lp" => obj_lp,
|
||||
"stats_obj" => stats_obj,
|
||||
"stats_gap" => stats_gap,
|
||||
"stats_ncuts" => length(keep),
|
||||
)
|
||||
|
||||
end
|
||||
|
||||
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
|
||||
vars = all_variables(model)
|
||||
nrows, ncols = size(cs.lhs)
|
||||
constrs = []
|
||||
gmi_exps = []
|
||||
for i = 1:nrows
|
||||
c = nothing
|
||||
gmi_exp = nothing
|
||||
gmi_exp2 = nothing
|
||||
expr = @expression(model, sum(cs.lhs[i, j] * vars[j] for j = 1:ncols))
|
||||
if isinf(cs.ub[i])
|
||||
c = @constraint(model, cs.lb[i] <= expr)
|
||||
gmi_exp = cs.lb[i] - expr
|
||||
elseif isinf(cs.lb[i])
|
||||
c = @constraint(model, expr <= cs.ub[i])
|
||||
gmi_exp = expr - cs.ub[i]
|
||||
else
|
||||
c = @constraint(model, cs.lb[i] <= expr <= cs.ub[i])
|
||||
gmi_exp = cs.lb[i] - expr
|
||||
gmi_exp2 = expr - cs.ub[i]
|
||||
end
|
||||
push!(constrs, c)
|
||||
push!(gmi_exps, gmi_exp)
|
||||
if !isnothing(gmi_exp2)
|
||||
push!(gmi_exps, gmi_exp2)
|
||||
end
|
||||
end
|
||||
return constrs, gmi_exps
|
||||
end
|
||||
|
||||
export collect_gmi_dual
|
@ -0,0 +1,22 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using HiGHS
|
||||
|
||||
function test_cuts_tableau_gmi_dual()
|
||||
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
|
||||
h5 = H5File(h5_filename, "r")
|
||||
try
|
||||
cuts_basis_vars = h5.get_array("cuts_basis_vars")
|
||||
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
|
||||
cuts_rows = h5.get_array("cuts_rows")
|
||||
@test size(cuts_basis_vars) == (15, 402)
|
||||
@test size(cuts_basis_sizes) == (15,4)
|
||||
@test size(cuts_rows) == (15,)
|
||||
finally
|
||||
h5.close()
|
||||
end
|
||||
end
|
Loading…
Reference in new issue