mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 08:28:52 -06:00
Make dual GMI cuts stronger
This commit is contained in:
@@ -185,7 +185,7 @@ function collect_gmi(
|
||||
)
|
||||
end
|
||||
|
||||
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4)
|
||||
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
||||
candidate_rows = [
|
||||
r for r = 1:length(basis.var_basic) if (
|
||||
(data.var_types[basis.var_basic[r]] != 'C') &&
|
||||
@@ -202,7 +202,7 @@ end
|
||||
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
|
||||
nrows, ncols = size(tableau.lhs)
|
||||
ub = Float64[Inf for _ = 1:nrows]
|
||||
lb = Float64[0.9999 for _ = 1:nrows]
|
||||
lb = Float64[0.999 for _ = 1:nrows]
|
||||
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
|
||||
lhs_I = Int[]
|
||||
lhs_J = Int[]
|
||||
|
||||
@@ -7,6 +7,7 @@ using JuMP
|
||||
using HiGHS
|
||||
using Random
|
||||
using DataStructures
|
||||
using Statistics
|
||||
|
||||
import ..H5FieldsExtractor
|
||||
|
||||
@@ -25,7 +26,7 @@ function collect_gmi_dual(
|
||||
mps_filename;
|
||||
optimizer,
|
||||
max_rounds = 10,
|
||||
max_cuts_per_round = 500,
|
||||
max_cuts_per_round = 1_000_000,
|
||||
time_limit = 3_600,
|
||||
)
|
||||
reset_timer!()
|
||||
@@ -263,6 +264,342 @@ function collect_gmi_dual(
|
||||
)
|
||||
end
|
||||
|
||||
function collect_gmi_FisSal2011(
|
||||
mps_filename;
|
||||
optimizer,
|
||||
max_rounds = 10_000,
|
||||
max_cuts_per_round = 1_000_000,
|
||||
time_limit = 30,
|
||||
interval_print=1,
|
||||
max_cut_age=10,
|
||||
)
|
||||
reset_timer!()
|
||||
initial_time = time()
|
||||
|
||||
@timeit "Read H5" begin
|
||||
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||
h5 = H5File(h5_filename, "r")
|
||||
sol_opt_dict = Dict(
|
||||
zip(
|
||||
h5.get_array("static_var_names"),
|
||||
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||
),
|
||||
)
|
||||
obj_mip = h5.get_scalar("mip_obj_value")
|
||||
h5.file.close()
|
||||
end
|
||||
|
||||
@timeit "Initialize" begin
|
||||
stats_obj = []
|
||||
stats_gap = []
|
||||
stats_ncuts = []
|
||||
pool = nothing
|
||||
cut_age = nothing
|
||||
lambda_curr = nothing
|
||||
lambda_best = nothing
|
||||
last_print_time = 0
|
||||
obj_initial = nothing
|
||||
obj_curr = 0
|
||||
obj_best = 0
|
||||
noimprov_count = 0
|
||||
backtrack_count = 0
|
||||
gapcl_best = 0
|
||||
end
|
||||
|
||||
gap(v) = 100 * abs(obj_mip - v) / abs(obj_mip)
|
||||
gapcl(v) = 100 * (v - obj_initial) / (obj_mip - obj_initial)
|
||||
|
||||
function perturb(v, ε=0.001)
|
||||
p = (1 - ε) .+ 2 * ε * rand(length(v))
|
||||
return v .* p
|
||||
end
|
||||
|
||||
@timeit "Read problem" begin
|
||||
model = read_from_file(mps_filename)
|
||||
set_optimizer(model, optimizer)
|
||||
end
|
||||
|
||||
@timeit "Convert model to standard form" begin
|
||||
# Extract problem data
|
||||
data = ProblemData(model)
|
||||
|
||||
# Construct optimal solution vector (with correct variable sequence)
|
||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||
|
||||
# Assert optimal solution is feasible for the original problem
|
||||
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||
|
||||
# Convert to standard form
|
||||
data_s, transforms = convert_to_standard_form(data)
|
||||
model_s = to_model(data_s)
|
||||
vars_s = all_variables(model_s)
|
||||
orig_obj_s = objective_function(model_s)
|
||||
set_optimizer(model_s, optimizer)
|
||||
relax_integrality(model_s)
|
||||
|
||||
# Convert optimal solution to standard form
|
||||
sol_opt_s = forward(transforms, sol_opt)
|
||||
|
||||
# Assert converted solution is feasible for standard form problem
|
||||
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||
end
|
||||
|
||||
for round = 1:max_rounds
|
||||
if round > 1
|
||||
@timeit "Update objective function" begin
|
||||
# Build Lagrangian term
|
||||
lambda_perturbed = perturb(lambda_curr)
|
||||
v = sparse(pool.lhs' * lambda_perturbed)
|
||||
lagr_term = AffExpr(dot(lambda_perturbed, pool.lb))
|
||||
for offset in 1:nnz(v)
|
||||
var_idx = v.nzind[offset]
|
||||
add_to_expression!(
|
||||
lagr_term,
|
||||
vars_s[var_idx],
|
||||
- v.nzval[offset],
|
||||
)
|
||||
end
|
||||
|
||||
# Update objective
|
||||
set_objective_function(
|
||||
model_s,
|
||||
orig_obj_s + lagr_term,
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Optimize LP (lagrangian)" begin
|
||||
set_silent(model_s)
|
||||
optimize!(model_s)
|
||||
sol_frac = get_x(model_s)
|
||||
obj_curr = objective_value(model_s)
|
||||
obj_curr <= obj_mip || error("LP value higher than MIP value: $(obj_curr) > $(obj_mip)")
|
||||
|
||||
if round == 1
|
||||
obj_initial = obj_curr
|
||||
end
|
||||
|
||||
if obj_curr >= obj_best
|
||||
obj_best = obj_curr
|
||||
gapcl_best = gapcl(obj_best)
|
||||
lambda_best = lambda_curr
|
||||
noimprov_count = 0
|
||||
else
|
||||
noimprov_count += 1
|
||||
end
|
||||
|
||||
if noimprov_count > 10
|
||||
lambda_curr = lambda_best
|
||||
backtrack_count += 1
|
||||
noimprov_count = 0
|
||||
continue
|
||||
end
|
||||
|
||||
push!(stats_obj, obj_curr)
|
||||
push!(stats_gap, gap(obj_curr))
|
||||
if round == 1
|
||||
push!(stats_ncuts, 0)
|
||||
else
|
||||
push!(stats_ncuts, length(pool.lb))
|
||||
end
|
||||
if termination_status(model_s) != MOI.OPTIMAL
|
||||
error("Non-optimal termination status")
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Select tableau rows" begin
|
||||
basis = get_basis(model_s)
|
||||
if round == 1
|
||||
original_basis = basis
|
||||
end
|
||||
selected_rows =
|
||||
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
||||
end
|
||||
|
||||
@timeit "Compute tableau rows" begin
|
||||
tableau = compute_tableau(data_s, basis, x = sol_frac, rows = selected_rows)
|
||||
|
||||
# Assert tableau rows have been computed correctly
|
||||
assert_eq(tableau.lhs * sol_frac, tableau.rhs, atol=1e-3)
|
||||
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs, atol=1e-3)
|
||||
end
|
||||
|
||||
@timeit "Compute GMI cuts" begin
|
||||
cuts_s = compute_gmi(data_s, tableau)
|
||||
assert_cuts_off(cuts_s, sol_frac)
|
||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||
ncuts = length(cuts_s.lb)
|
||||
end
|
||||
|
||||
@timeit "Add new cuts to the pool" begin
|
||||
if round == 1
|
||||
pool = cuts_s
|
||||
lambda_curr = zeros(ncuts)
|
||||
lambda_best = zeros(ncuts)
|
||||
cut_age = zeros(ncuts)
|
||||
else
|
||||
pool.lhs = [pool.lhs; cuts_s.lhs]
|
||||
pool.lb = [pool.lb; cuts_s.lb]
|
||||
pool.ub = [pool.ub; cuts_s.ub]
|
||||
lambda_curr = [lambda_curr; zeros(ncuts)]
|
||||
lambda_best = [lambda_best; zeros(ncuts)]
|
||||
cut_age = [cut_age; zeros(ncuts)]
|
||||
end
|
||||
end
|
||||
|
||||
# @timeit "Update multipliers (subgradient)" begin
|
||||
# subgrad = pool.lb .- pool.lhs * sol_frac
|
||||
# lambda = max.(0, lambda .+ 0.01 * subgrad)
|
||||
# end
|
||||
|
||||
selected_idx = []
|
||||
selected_contrs = []
|
||||
|
||||
@timeit "Update multipliers (large LP)" begin
|
||||
while true
|
||||
@timeit "Optimize LP (extended)" begin
|
||||
set_objective_function(model_s, orig_obj_s)
|
||||
optimize!(model_s)
|
||||
sol_frac = get_x(model_s)
|
||||
end
|
||||
|
||||
@timeit "Find most violated cut" begin
|
||||
violations = pool.lb .- pool.lhs * sol_frac
|
||||
σ = sortperm(violations, rev=true)
|
||||
end
|
||||
|
||||
# Stop if all cuts are satisfied
|
||||
if violations[σ[1]] <= 1e-6
|
||||
break
|
||||
end
|
||||
|
||||
@timeit "Add constraint to the model" begin
|
||||
push!(selected_idx, σ[1])
|
||||
cut_lhs = pool.lhs[σ[1], :]
|
||||
cut_lhs_value = 0.0
|
||||
cut_lb = pool.lb[σ[1]]
|
||||
cut_expr = AffExpr()
|
||||
for offset in 1:nnz(cut_lhs)
|
||||
var_idx = cut_lhs.nzind[offset]
|
||||
add_to_expression!(
|
||||
cut_expr,
|
||||
vars_s[var_idx],
|
||||
cut_lhs.nzval[offset],
|
||||
)
|
||||
cut_lhs_value += sol_frac[var_idx] * cut_lhs.nzval[offset]
|
||||
end
|
||||
cut_constr = @constraint(model_s, cut_expr >= cut_lb)
|
||||
push!(selected_contrs, cut_constr)
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Find dual values for all selected cuts" begin
|
||||
lambda_curr .= 0
|
||||
cut_age .+= 1
|
||||
for (offset, idx) in enumerate(selected_idx)
|
||||
lambda_curr[idx] = -shadow_price(selected_contrs[offset])
|
||||
if lambda_curr[idx] > 1e-5
|
||||
cut_age[idx] = 0
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Filter cut pool
|
||||
keep = findall(cut_age .< max_cut_age)
|
||||
pool.lhs = pool.lhs[keep, :]
|
||||
pool.ub = pool.ub[keep]
|
||||
pool.lb = pool.lb[keep]
|
||||
lambda_curr = lambda_curr[keep]
|
||||
lambda_best = lambda_best[keep]
|
||||
cut_age = cut_age[keep]
|
||||
|
||||
@timeit "Delete all cut constraints" begin
|
||||
delete.(model_s, selected_contrs)
|
||||
end
|
||||
end
|
||||
|
||||
push!(stats_ncuts, length(pool.lb))
|
||||
|
||||
elapsed_time = time() - initial_time
|
||||
if elapsed_time > time_limit
|
||||
@info "Time limit exceeded. Stopping."
|
||||
break
|
||||
end
|
||||
|
||||
if round == 1
|
||||
@printf(
|
||||
"%8s %12s %12s %12s %8s %8s %9s\n",
|
||||
"round",
|
||||
"obj",
|
||||
"gapcl_curr",
|
||||
"gapcl_best",
|
||||
"active",
|
||||
"pool",
|
||||
"backtrack",
|
||||
)
|
||||
end
|
||||
|
||||
if time() - last_print_time > interval_print
|
||||
last_print_time = time()
|
||||
@printf(
|
||||
"%8d %12.6e %12.2f %12.2f %8d %8d %9d\n",
|
||||
round,
|
||||
obj_curr,
|
||||
gapcl(obj_curr),
|
||||
gapcl_best,
|
||||
length(selected_idx),
|
||||
length(pool.ub),
|
||||
backtrack_count,
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
# @timeit "Store cuts in H5 file" begin
|
||||
# if all_cuts !== nothing
|
||||
# ncuts = length(all_cuts_rows)
|
||||
# total =
|
||||
# length(original_basis.var_basic) +
|
||||
# length(original_basis.var_nonbasic) +
|
||||
# length(original_basis.constr_basic) +
|
||||
# length(original_basis.constr_nonbasic)
|
||||
# all_cuts_basis_sizes = Array{Int64,2}(undef, ncuts, 4)
|
||||
# all_cuts_basis_vars = Array{Int64,2}(undef, ncuts, total)
|
||||
# for i = 1:ncuts
|
||||
# vb = all_cuts_bases[i].var_basic
|
||||
# vn = all_cuts_bases[i].var_nonbasic
|
||||
# cb = all_cuts_bases[i].constr_basic
|
||||
# cn = all_cuts_bases[i].constr_nonbasic
|
||||
# all_cuts_basis_sizes[i, :] = [length(vb) length(vn) length(cb) length(cn)]
|
||||
# all_cuts_basis_vars[i, :] = [vb' vn' cb' cn']
|
||||
# end
|
||||
# @info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||
# h5 = H5File(h5_filename)
|
||||
# h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||
# h5.put_array("cuts_lb", all_cuts.lb)
|
||||
# h5.put_array("cuts_ub", all_cuts.ub)
|
||||
# h5.put_array("cuts_basis_vars", all_cuts_basis_vars)
|
||||
# h5.put_array("cuts_basis_sizes", all_cuts_basis_sizes)
|
||||
# h5.put_array("cuts_rows", all_cuts_rows)
|
||||
# h5.file.close()
|
||||
# end
|
||||
# end
|
||||
|
||||
to = TimerOutputs.get_defaulttimer()
|
||||
stats_time = TimerOutputs.tottime(to) / 1e9
|
||||
print_timer()
|
||||
|
||||
return OrderedDict(
|
||||
"instance" => mps_filename,
|
||||
"max_rounds" => max_rounds,
|
||||
"rounds" => length(stats_obj) - 1,
|
||||
"obj_mip" => obj_mip,
|
||||
"stats_obj" => stats_obj,
|
||||
"stats_ncuts" => stats_ncuts,
|
||||
"stats_time" => stats_time,
|
||||
)
|
||||
end
|
||||
|
||||
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
|
||||
vars = all_variables(model)
|
||||
nrows, ncols = size(cs.lhs)
|
||||
@@ -576,5 +913,5 @@ function __init_gmi_dual__()
|
||||
copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy)
|
||||
end
|
||||
|
||||
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent
|
||||
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent, collect_gmi_FisSal2011
|
||||
|
||||
|
||||
@@ -102,7 +102,14 @@ function forward!(t::AddSlackVariables, data::ProblemData)
|
||||
ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]]
|
||||
le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]]
|
||||
EQ, GE, LE = length(eq), length(ge), length(le)
|
||||
|
||||
is_integral(row_idx, rhs) = (
|
||||
abs(rhs - round(rhs)) <= 1e-6 &&
|
||||
all(j -> data.var_types[j] ∈ ['I', 'B'], findnz(data.constr_lhs[row_idx, :])[1])
|
||||
)
|
||||
slack_types = [
|
||||
[is_integral(ge[i], data.constr_lb[ge[i]]) ? 'I' : 'C' for i = 1:GE];
|
||||
[is_integral(le[i], data.constr_ub[le[i]]) ? 'I' : 'C' for i = 1:LE]
|
||||
]
|
||||
t.M1 = [
|
||||
I spzeros(ncols, GE + LE)
|
||||
data.constr_lhs[ge, :] spzeros(GE, GE + LE)
|
||||
@@ -129,7 +136,7 @@ function forward!(t::AddSlackVariables, data::ProblemData)
|
||||
data.var_lb = [data.var_lb; zeros(GE + LE)]
|
||||
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]]
|
||||
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]]
|
||||
data.var_types = [data.var_types; ['C' for _ = 1:(GE+LE)]]
|
||||
data.var_types = [data.var_types; slack_types]
|
||||
data.constr_lb = [
|
||||
data.constr_lb[eq]
|
||||
data.constr_lb[ge]
|
||||
|
||||
Reference in New Issue
Block a user