|
|
|
@ -5,6 +5,8 @@
|
|
|
|
|
using Printf
|
|
|
|
|
using JuMP
|
|
|
|
|
using HiGHS
|
|
|
|
|
using Random
|
|
|
|
|
using DataStructures
|
|
|
|
|
|
|
|
|
|
global ExpertDualGmiComponent = PyNULL()
|
|
|
|
|
global KnnDualGmiComponent = PyNULL()
|
|
|
|
@ -14,6 +16,7 @@ Base.@kwdef mutable struct _KnnDualGmiData
|
|
|
|
|
extractor = nothing
|
|
|
|
|
train_h5 = nothing
|
|
|
|
|
model = nothing
|
|
|
|
|
strategy = nothing
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function collect_gmi_dual(
|
|
|
|
@ -250,7 +253,7 @@ function collect_gmi_dual(
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function ExpertDualGmiComponent_before_mip(test_h5, model, stats)
|
|
|
|
|
function ExpertDualGmiComponent_before_mip(test_h5, model, _)
|
|
|
|
|
# Read cuts and optimal solution
|
|
|
|
|
h5 = H5File(test_h5)
|
|
|
|
|
sol_opt_dict = Dict(
|
|
|
|
@ -374,10 +377,12 @@ function ExpertDualGmiComponent_before_mip(test_h5, model, stats)
|
|
|
|
|
set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
|
|
|
|
|
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
|
|
|
|
|
|
|
|
|
|
stats["gmi_time_convert"] = stats_time_convert
|
|
|
|
|
stats["gmi_time_tableau"] = stats_time_tableau
|
|
|
|
|
stats["gmi_time_gmi"] = stats_time_gmi
|
|
|
|
|
return
|
|
|
|
|
stats = Dict()
|
|
|
|
|
stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
|
|
|
|
|
stats["ExpertDualGmi: time convert"] = stats_time_convert
|
|
|
|
|
stats["ExpertDualGmi: time tableau"] = stats_time_tableau
|
|
|
|
|
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
|
|
|
|
|
return stats
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
|
|
|
|
@ -477,7 +482,6 @@ function _dualgmi_generate(train_h5, model)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
@info "Collected $(length(all_cuts.lb)) distinct cuts"
|
|
|
|
|
return all_cuts
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
@ -497,23 +501,53 @@ end
|
|
|
|
|
|
|
|
|
|
function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5)
|
|
|
|
|
x = hcat([_dualgmi_features(filename, data.extractor) for filename in train_h5]...)'
|
|
|
|
|
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = data.k)
|
|
|
|
|
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = length(train_h5))
|
|
|
|
|
model.fit(x)
|
|
|
|
|
data.model = model
|
|
|
|
|
data.train_h5 = train_h5
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, stats)
|
|
|
|
|
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _)
|
|
|
|
|
x = _dualgmi_features(test_h5, data.extractor)
|
|
|
|
|
x = reshape(x, 1, length(x))
|
|
|
|
|
selected = vec(data.model.kneighbors(x, return_distance = false)) .+ 1
|
|
|
|
|
@info "Dual GMI: Nearest neighbors:"
|
|
|
|
|
for h5_filename in data.train_h5[selected]
|
|
|
|
|
@info " $(h5_filename)"
|
|
|
|
|
neigh_dist, neigh_ind = data.model.kneighbors(x, return_distance = true)
|
|
|
|
|
neigh_ind = neigh_ind .+ 1
|
|
|
|
|
N = length(neigh_dist)
|
|
|
|
|
|
|
|
|
|
if data.strategy == "near"
|
|
|
|
|
selected = collect(1:(data.k))
|
|
|
|
|
elseif data.strategy == "far"
|
|
|
|
|
selected = collect((N - data.k + 1) : N)
|
|
|
|
|
elseif data.strategy == "rand"
|
|
|
|
|
selected = shuffle(collect(1:N))[1:(data.k)]
|
|
|
|
|
else
|
|
|
|
|
error("unknown strategy: $(data.strategy)")
|
|
|
|
|
end
|
|
|
|
|
cuts = _dualgmi_generate(data.train_h5[selected], model)
|
|
|
|
|
|
|
|
|
|
@info "Dual GMI: Selected neighbors ($(data.strategy)):"
|
|
|
|
|
neigh_dist = neigh_dist[selected]
|
|
|
|
|
neigh_ind = neigh_ind[selected]
|
|
|
|
|
for i in 1:data.k
|
|
|
|
|
h5_filename = data.train_h5[neigh_ind[i]]
|
|
|
|
|
dist = neigh_dist[i]
|
|
|
|
|
@info " $(h5_filename) dist=$(dist)"
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@info "Dual GMI: Generating cuts..."
|
|
|
|
|
time_generate = @elapsed begin
|
|
|
|
|
cuts = _dualgmi_generate(data.train_h5[neigh_ind], model)
|
|
|
|
|
end
|
|
|
|
|
@info "Dual GMI: Generated $(length(cuts.lb)) unique cuts in $(time_generate) seconds"
|
|
|
|
|
|
|
|
|
|
_dualgmi_set_callback(model, cuts)
|
|
|
|
|
|
|
|
|
|
stats = Dict()
|
|
|
|
|
stats["KnnDualGmi: k"] = data.k
|
|
|
|
|
stats["KnnDualGmi: strategy"] = data.strategy
|
|
|
|
|
stats["KnnDualGmi: cuts"] = length(cuts.lb)
|
|
|
|
|
stats["KnnDualGmi: time generate"] = time_generate
|
|
|
|
|
return stats
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function __init_gmi_dual__()
|
|
|
|
@ -526,14 +560,14 @@ function __init_gmi_dual__()
|
|
|
|
|
copy!(ExpertDualGmiComponent, Class1)
|
|
|
|
|
|
|
|
|
|
@pydef mutable struct Class2
|
|
|
|
|
function __init__(self; extractor, k = 3)
|
|
|
|
|
self.data = _KnnDualGmiData(; extractor, k)
|
|
|
|
|
function __init__(self; extractor, k = 3, strategy = "near")
|
|
|
|
|
self.data = _KnnDualGmiData(; extractor, k, strategy)
|
|
|
|
|
end
|
|
|
|
|
function fit(self, train_h5)
|
|
|
|
|
KnnDualGmiComponent_fit(self.data, train_h5)
|
|
|
|
|
end
|
|
|
|
|
function before_mip(self, test_h5, model, stats)
|
|
|
|
|
KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
|
|
|
|
|
return KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(KnnDualGmiComponent, Class2)
|
|
|
|
|