gmi_dual: Implement alternative strategies, report time and cuts

feature/replay^2
Alinson S. Xavier 1 year ago
parent c5fe6bf712
commit 15dfcac32e

@ -5,6 +5,8 @@
using Printf using Printf
using JuMP using JuMP
using HiGHS using HiGHS
using Random
using DataStructures
global ExpertDualGmiComponent = PyNULL() global ExpertDualGmiComponent = PyNULL()
global KnnDualGmiComponent = PyNULL() global KnnDualGmiComponent = PyNULL()
@ -14,6 +16,7 @@ Base.@kwdef mutable struct _KnnDualGmiData
extractor = nothing extractor = nothing
train_h5 = nothing train_h5 = nothing
model = nothing model = nothing
strategy = nothing
end end
function collect_gmi_dual( function collect_gmi_dual(
@ -250,7 +253,7 @@ function collect_gmi_dual(
) )
end end
function ExpertDualGmiComponent_before_mip(test_h5, model, stats) function ExpertDualGmiComponent_before_mip(test_h5, model, _)
# Read cuts and optimal solution # Read cuts and optimal solution
h5 = H5File(test_h5) h5 = H5File(test_h5)
sol_opt_dict = Dict( sol_opt_dict = Dict(
@ -374,10 +377,12 @@ function ExpertDualGmiComponent_before_mip(test_h5, model, stats)
set_attribute(model, MOI.UserCutCallback(), cut_callback_1) set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2) # set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
stats["gmi_time_convert"] = stats_time_convert stats = Dict()
stats["gmi_time_tableau"] = stats_time_tableau stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
stats["gmi_time_gmi"] = stats_time_gmi stats["ExpertDualGmi: time convert"] = stats_time_convert
return stats["ExpertDualGmi: time tableau"] = stats_time_tableau
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
return stats
end end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet) function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
@ -477,7 +482,6 @@ function _dualgmi_generate(train_h5, model)
end end
end end
end end
@info "Collected $(length(all_cuts.lb)) distinct cuts"
return all_cuts return all_cuts
end end
@ -497,23 +501,53 @@ end
function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5) function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5)
x = hcat([_dualgmi_features(filename, data.extractor) for filename in train_h5]...)' x = hcat([_dualgmi_features(filename, data.extractor) for filename in train_h5]...)'
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = data.k) model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = length(train_h5))
model.fit(x) model.fit(x)
data.model = model data.model = model
data.train_h5 = train_h5 data.train_h5 = train_h5
end end
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, stats) function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _)
x = _dualgmi_features(test_h5, data.extractor) x = _dualgmi_features(test_h5, data.extractor)
x = reshape(x, 1, length(x)) x = reshape(x, 1, length(x))
selected = vec(data.model.kneighbors(x, return_distance = false)) .+ 1 neigh_dist, neigh_ind = data.model.kneighbors(x, return_distance = true)
@info "Dual GMI: Nearest neighbors:" neigh_ind = neigh_ind .+ 1
for h5_filename in data.train_h5[selected] N = length(neigh_dist)
@info " $(h5_filename)"
if data.strategy == "near"
selected = collect(1:(data.k))
elseif data.strategy == "far"
selected = collect((N - data.k + 1) : N)
elseif data.strategy == "rand"
selected = shuffle(collect(1:N))[1:(data.k)]
else
error("unknown strategy: $(data.strategy)")
end
@info "Dual GMI: Selected neighbors ($(data.strategy)):"
neigh_dist = neigh_dist[selected]
neigh_ind = neigh_ind[selected]
for i in 1:data.k
h5_filename = data.train_h5[neigh_ind[i]]
dist = neigh_dist[i]
@info " $(h5_filename) dist=$(dist)"
end end
cuts = _dualgmi_generate(data.train_h5[selected], model)
@info "Dual GMI: Generating cuts..."
time_generate = @elapsed begin
cuts = _dualgmi_generate(data.train_h5[neigh_ind], model)
end
@info "Dual GMI: Generated $(length(cuts.lb)) unique cuts in $(time_generate) seconds"
_dualgmi_set_callback(model, cuts) _dualgmi_set_callback(model, cuts)
stats = Dict()
stats["KnnDualGmi: k"] = data.k
stats["KnnDualGmi: strategy"] = data.strategy
stats["KnnDualGmi: cuts"] = length(cuts.lb)
stats["KnnDualGmi: time generate"] = time_generate
return stats
end end
function __init_gmi_dual__() function __init_gmi_dual__()
@ -526,14 +560,14 @@ function __init_gmi_dual__()
copy!(ExpertDualGmiComponent, Class1) copy!(ExpertDualGmiComponent, Class1)
@pydef mutable struct Class2 @pydef mutable struct Class2
function __init__(self; extractor, k = 3) function __init__(self; extractor, k = 3, strategy = "near")
self.data = _KnnDualGmiData(; extractor, k) self.data = _KnnDualGmiData(; extractor, k, strategy)
end end
function fit(self, train_h5) function fit(self, train_h5)
KnnDualGmiComponent_fit(self.data, train_h5) KnnDualGmiComponent_fit(self.data, train_h5)
end end
function before_mip(self, test_h5, model, stats) function before_mip(self, test_h5, model, stats)
KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats) return KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
end end
end end
copy!(KnnDualGmiComponent, Class2) copy!(KnnDualGmiComponent, Class2)

Loading…
Cancel
Save