mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 00:18:51 -06:00
BB: Collect strong branching data
This commit is contained in:
@@ -21,6 +21,9 @@ global UserCutsComponent = PyNULL()
|
||||
global MemorySample = PyNULL()
|
||||
global Hdf5Sample = PyNULL()
|
||||
|
||||
to_str_array(values) = py"to_str_array"(values)
|
||||
from_str_array(values) = py"from_str_array"(values)
|
||||
|
||||
include("solvers/structs.jl")
|
||||
|
||||
include("utils/log.jl")
|
||||
@@ -65,9 +68,6 @@ function __init__()
|
||||
"""
|
||||
end
|
||||
|
||||
to_str_array(values) = py"to_str_array"(values)
|
||||
from_str_array(values) = py"from_str_array"(values)
|
||||
|
||||
function convert(::Type{SparseMatrixCSC}, o::PyObject)
|
||||
I, J, V = pyimport("scipy.sparse").find(o)
|
||||
return sparse(I .+ 1, J .+ 1, V, o.shape...)
|
||||
|
||||
@@ -10,6 +10,7 @@ frac(x) = x - floor(x)
|
||||
|
||||
include("structs.jl")
|
||||
|
||||
include("collect.jl")
|
||||
include("nodepool.jl")
|
||||
include("optimize.jl")
|
||||
include("log.jl")
|
||||
|
||||
61
src/bb/collect.jl
Normal file
61
src/bb/collect.jl
Normal file
@@ -0,0 +1,61 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Printf
|
||||
using Base.Threads
|
||||
import Base.Threads: @threads, nthreads, threadid
|
||||
|
||||
import ..load_data, ..Hdf5Sample
|
||||
|
||||
function collect!(
|
||||
optimizer,
|
||||
filename::String;
|
||||
time_limit::Float64 = Inf,
|
||||
node_limit::Int = typemax(Int),
|
||||
gap_limit::Float64 = 1e-4,
|
||||
print_interval::Int = 5,
|
||||
branch_rule::VariableBranchingRule = ReliabilityBranching(collect = true),
|
||||
)::NodePool
|
||||
model = read_from_file(filename)
|
||||
mip = init(optimizer)
|
||||
load!(mip, model)
|
||||
|
||||
h5 = Hdf5Sample(replace(filename, ".mps.gz" => ".h5"), "r")
|
||||
primal_bound = h5.get_scalar("mip_upper_bound")
|
||||
if primal_bound === nothing
|
||||
primal_bound = h5.get_scalar("mip_obj_value")
|
||||
end
|
||||
h5.file.close()
|
||||
|
||||
pool = solve!(
|
||||
mip;
|
||||
initial_primal_bound = primal_bound,
|
||||
time_limit,
|
||||
node_limit,
|
||||
gap_limit,
|
||||
print_interval,
|
||||
branch_rule,
|
||||
)
|
||||
|
||||
h5 = Hdf5Sample(replace(filename, ".mps.gz" => ".h5"))
|
||||
pseudocost_up = [NaN for _ = 1:mip.nvars]
|
||||
pseudocost_down = [NaN for _ = 1:mip.nvars]
|
||||
priorities = [0.0 for _ = 1:mip.nvars]
|
||||
for (var, var_hist) in pool.var_history
|
||||
pseudocost_up[var.index] = var_hist.pseudocost_up
|
||||
pseudocost_down[var.index] = var_hist.pseudocost_down
|
||||
x = mean(var_hist.fractional_values)
|
||||
f_up = x - floor(x)
|
||||
f_down = ceil(x) - x
|
||||
priorities[var.index] =
|
||||
var_hist.pseudocost_up * f_up * var_hist.pseudocost_down * f_down
|
||||
end
|
||||
h5.put_array("bb_var_pseudocost_up", pseudocost_up)
|
||||
h5.put_array("bb_var_pseudocost_down", pseudocost_down)
|
||||
h5.put_array("bb_var_priority", priorities)
|
||||
collect!(branch_rule, h5)
|
||||
h5.file.close()
|
||||
|
||||
return pool
|
||||
end
|
||||
@@ -19,15 +19,7 @@ function _probe(
|
||||
status = CPXlpopt(cpx.env, cpx.lp)
|
||||
status == 0 || error("CPXlpopt failed ($status)")
|
||||
|
||||
status = CPXstrongbranch(
|
||||
cpx.env,
|
||||
cpx.lp,
|
||||
indices,
|
||||
cnt,
|
||||
downobj,
|
||||
upobj,
|
||||
itlim,
|
||||
)
|
||||
status = CPXstrongbranch(cpx.env, cpx.lp, indices, cnt, downobj, upobj, itlim)
|
||||
status == 0 || error("CPXstrongbranch failed ($status)")
|
||||
|
||||
return upobj[1] * mip.sense, downobj[1] * mip.sense
|
||||
@@ -38,4 +30,4 @@ function _relax_integrality!(cpx::CPLEX.Optimizer)::Nothing
|
||||
status = CPXchgprobtype(cpx.env, cpx.lp, CPLEX.CPXPROB_LP)
|
||||
status == 0 || error("CPXchgprobtype failed ($status)")
|
||||
return
|
||||
end
|
||||
end
|
||||
|
||||
25
src/bb/lp.jl
25
src/bb/lp.jl
@@ -11,13 +11,14 @@ const MOI = MathOptInterface
|
||||
|
||||
function init(constructor)::MIP
|
||||
return MIP(
|
||||
constructor,
|
||||
Any[nothing for t = 1:nthreads()],
|
||||
Variable[],
|
||||
Float64[],
|
||||
Float64[],
|
||||
1.0,
|
||||
0,
|
||||
constructor = constructor,
|
||||
optimizers = Any[nothing for t = 1:nthreads()],
|
||||
int_vars = Variable[],
|
||||
int_vars_lb = Float64[],
|
||||
int_vars_ub = Float64[],
|
||||
sense = 1.0,
|
||||
lp_iterations = 0,
|
||||
nvars = 0,
|
||||
)
|
||||
end
|
||||
|
||||
@@ -27,10 +28,10 @@ function read!(mip::MIP, filename::AbstractString)::Nothing
|
||||
end
|
||||
|
||||
function load!(mip::MIP, prototype::JuMP.Model)
|
||||
mip.nvars = num_variables(prototype)
|
||||
_replace_zero_one!(backend(prototype))
|
||||
_assert_supported(backend(prototype))
|
||||
mip.int_vars, mip.int_vars_lb, mip.int_vars_ub =
|
||||
_get_int_variables(backend(prototype))
|
||||
mip.int_vars, mip.int_vars_lb, mip.int_vars_ub = _get_int_variables(backend(prototype))
|
||||
mip.sense = _get_objective_sense(backend(prototype))
|
||||
_relax_integrality!(backend(prototype))
|
||||
@threads for t = 1:nthreads()
|
||||
@@ -133,11 +134,7 @@ function _get_int_variables(
|
||||
var_ub = constr.upper
|
||||
MOI.delete(optimizer, _upper_bound_index(var))
|
||||
end
|
||||
MOI.add_constraint(
|
||||
optimizer,
|
||||
var,
|
||||
MOI.Interval(var_lb, var_ub),
|
||||
)
|
||||
MOI.add_constraint(optimizer, var, MOI.Interval(var_lb, var_ub))
|
||||
end
|
||||
push!(vars, var)
|
||||
push!(lb, var_lb)
|
||||
|
||||
@@ -19,7 +19,7 @@ function solve!(
|
||||
enable_plunging = true,
|
||||
)::NodePool
|
||||
time_initial = time()
|
||||
pool = NodePool(mip=mip)
|
||||
pool = NodePool(mip = mip)
|
||||
pool.primal_bound = initial_primal_bound
|
||||
|
||||
root_node = _create_node(mip)
|
||||
@@ -34,9 +34,9 @@ function solve!(
|
||||
|
||||
offer(
|
||||
pool,
|
||||
parent_node=nothing,
|
||||
child_nodes=[root_node],
|
||||
print_interval=print_interval,
|
||||
parent_node = nothing,
|
||||
child_nodes = [root_node],
|
||||
print_interval = print_interval,
|
||||
)
|
||||
@threads for t = 1:nthreads()
|
||||
child_one, child_zero, suggestions = nothing, nothing, Node[]
|
||||
@@ -47,10 +47,10 @@ function solve!(
|
||||
end
|
||||
node = take(
|
||||
pool,
|
||||
suggestions=suggestions,
|
||||
time_remaining=time_limit - time_elapsed,
|
||||
node_limit=node_limit,
|
||||
gap_limit=gap_limit,
|
||||
suggestions = suggestions,
|
||||
time_remaining = time_limit - time_elapsed,
|
||||
node_limit = node_limit,
|
||||
gap_limit = gap_limit,
|
||||
)
|
||||
if node == :END
|
||||
break
|
||||
@@ -85,26 +85,26 @@ function solve!(
|
||||
|
||||
child_zero = _create_node(
|
||||
mip,
|
||||
index=ids[2],
|
||||
parent=node,
|
||||
branch_var=branch_var,
|
||||
branch_var_lb=var_lb,
|
||||
branch_var_ub=floor(var_value),
|
||||
index = ids[2],
|
||||
parent = node,
|
||||
branch_var = branch_var,
|
||||
branch_var_lb = var_lb,
|
||||
branch_var_ub = floor(var_value),
|
||||
)
|
||||
child_one = _create_node(
|
||||
mip,
|
||||
index=ids[1],
|
||||
parent=node,
|
||||
branch_var=branch_var,
|
||||
branch_var_lb=ceil(var_value),
|
||||
branch_var_ub=var_ub,
|
||||
index = ids[1],
|
||||
parent = node,
|
||||
branch_var = branch_var,
|
||||
branch_var_lb = ceil(var_value),
|
||||
branch_var_ub = var_ub,
|
||||
)
|
||||
offer(
|
||||
pool,
|
||||
parent_node=node,
|
||||
child_nodes=[child_one, child_zero],
|
||||
time_elapsed=time_elapsed,
|
||||
print_interval=print_interval,
|
||||
parent_node = node,
|
||||
child_nodes = [child_one, child_zero],
|
||||
time_elapsed = time_elapsed,
|
||||
print_interval = print_interval,
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -114,11 +114,11 @@ end
|
||||
|
||||
function _create_node(
|
||||
mip;
|
||||
index::Int=0,
|
||||
parent::Union{Nothing,Node}=nothing,
|
||||
branch_var::Union{Nothing,Variable}=nothing,
|
||||
branch_var_lb::Union{Nothing,Float64}=nothing,
|
||||
branch_var_ub::Union{Nothing,Float64}=nothing
|
||||
index::Int = 0,
|
||||
parent::Union{Nothing,Node} = nothing,
|
||||
branch_var::Union{Nothing,Variable} = nothing,
|
||||
branch_var_lb::Union{Nothing,Float64} = nothing,
|
||||
branch_var_ub::Union{Nothing,Float64} = nothing,
|
||||
)::Node
|
||||
if parent === nothing
|
||||
branch_vars = Variable[]
|
||||
@@ -135,8 +135,9 @@ function _create_node(
|
||||
status, obj = solve_relaxation!(mip)
|
||||
if status == :Optimal
|
||||
vals = values(mip, mip.int_vars)
|
||||
fractional_indices =
|
||||
[j for j in 1:length(mip.int_vars) if 1e-6 < vals[j] - floor(vals[j]) < 1 - 1e-6]
|
||||
fractional_indices = [
|
||||
j for j in 1:length(mip.int_vars) if 1e-6 < vals[j] - floor(vals[j]) < 1 - 1e-6
|
||||
]
|
||||
fractional_values = vals[fractional_indices]
|
||||
fractional_variables = mip.int_vars[fractional_indices]
|
||||
else
|
||||
@@ -159,51 +160,6 @@ function _create_node(
|
||||
)
|
||||
end
|
||||
|
||||
function solve!(
|
||||
optimizer,
|
||||
filename::String;
|
||||
time_limit::Float64=Inf,
|
||||
node_limit::Int=typemax(Int),
|
||||
gap_limit::Float64=1e-4,
|
||||
print_interval::Int=5,
|
||||
branch_rule::VariableBranchingRule=ReliabilityBranching()
|
||||
)::NodePool
|
||||
model = read_from_file("$filename.mps.gz")
|
||||
mip = init(optimizer)
|
||||
load!(mip, model)
|
||||
|
||||
h5 = Hdf5Sample("$filename.h5")
|
||||
primal_bound = h5.get_scalar("mip_obj_value")
|
||||
nvars = length(h5.get_array("static_var_names"))
|
||||
|
||||
pool = solve!(
|
||||
mip;
|
||||
initial_primal_bound=primal_bound,
|
||||
time_limit,
|
||||
node_limit,
|
||||
gap_limit,
|
||||
print_interval,
|
||||
branch_rule
|
||||
)
|
||||
|
||||
pseudocost_up = [NaN for _ = 1:nvars]
|
||||
pseudocost_down = [NaN for _ = 1:nvars]
|
||||
priorities = [0.0 for _ in 1:nvars]
|
||||
for (var, var_hist) in pool.var_history
|
||||
pseudocost_up[var.index] = var_hist.pseudocost_up
|
||||
pseudocost_down[var.index] = var_hist.pseudocost_down
|
||||
x = mean(var_hist.fractional_values)
|
||||
f_up = x - floor(x)
|
||||
f_down = ceil(x) - x
|
||||
priorities[var.index] = var_hist.pseudocost_up * f_up * var_hist.pseudocost_down * f_down
|
||||
end
|
||||
h5.put_array("bb_var_pseudocost_up", pseudocost_up)
|
||||
h5.put_array("bb_var_pseudocost_down", pseudocost_down)
|
||||
h5.put_array("bb_var_priority", priorities)
|
||||
|
||||
return pool
|
||||
end
|
||||
|
||||
function _set_node_bounds(node::Node)
|
||||
set_bounds!(node.mip, node.branch_vars, node.branch_lb, node.branch_ub)
|
||||
end
|
||||
|
||||
@@ -9,7 +9,7 @@ struct Variable
|
||||
index::Any
|
||||
end
|
||||
|
||||
mutable struct MIP
|
||||
Base.@kwdef mutable struct MIP
|
||||
constructor::Any
|
||||
optimizers::Vector
|
||||
int_vars::Vector{Variable}
|
||||
@@ -17,6 +17,7 @@ mutable struct MIP
|
||||
int_vars_ub::Vector{Float64}
|
||||
sense::Float64
|
||||
lp_iterations::Int64
|
||||
nvars::Int
|
||||
end
|
||||
|
||||
struct Node
|
||||
|
||||
@@ -2,6 +2,16 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import ..to_str_array
|
||||
|
||||
Base.@kwdef mutable struct ReliabilityBranchingStats
|
||||
branched_count::Vector{Int} = []
|
||||
num_strong_branch_calls = 0
|
||||
score_var_names::Vector{String} = []
|
||||
score_features::Vector{Vector{Float32}} = []
|
||||
score_targets::Vector{Float32} = []
|
||||
end
|
||||
|
||||
"""
|
||||
ReliabilityBranching
|
||||
|
||||
@@ -13,12 +23,14 @@ Base.@kwdef mutable struct ReliabilityBranching <: VariableBranchingRule
|
||||
min_samples::Int = 8
|
||||
max_sb_calls::Int = 100
|
||||
look_ahead::Int = 10
|
||||
n_sb_calls::Int = 0
|
||||
side_effect::Bool = true
|
||||
max_iterations::Int = 1_000_000
|
||||
aggregation::Symbol = :prod
|
||||
stats::ReliabilityBranchingStats = ReliabilityBranchingStats()
|
||||
collect::Bool = false
|
||||
end
|
||||
|
||||
|
||||
function _strong_branch_score(;
|
||||
node::Node,
|
||||
pool::NodePool,
|
||||
@@ -28,7 +40,6 @@ function _strong_branch_score(;
|
||||
max_iterations::Int,
|
||||
aggregation::Symbol,
|
||||
)::Tuple{Float64,Int}
|
||||
|
||||
# Find current variable lower and upper bounds
|
||||
offset = findfirst(isequal(var), node.mip.int_vars)
|
||||
var_lb = node.mip.int_vars_lb[offset]
|
||||
@@ -68,6 +79,14 @@ function find_branching_var(
|
||||
node::Node,
|
||||
pool::NodePool,
|
||||
)::Variable
|
||||
stats = rule.stats
|
||||
|
||||
# Initialize statistics
|
||||
if isempty(stats.branched_count)
|
||||
stats.branched_count = zeros(node.mip.nvars)
|
||||
end
|
||||
|
||||
# Sort variables by pseudocost score
|
||||
nfrac = length(node.fractional_variables)
|
||||
pseudocost_scores = [
|
||||
_pseudocost_score(
|
||||
@@ -79,10 +98,37 @@ function find_branching_var(
|
||||
]
|
||||
σ = sortperm(pseudocost_scores, rev = true)
|
||||
sorted_vars = node.fractional_variables[σ]
|
||||
|
||||
if rule.collect
|
||||
# Compute dynamic features for all fractional variables
|
||||
features = []
|
||||
for (i, var) in enumerate(sorted_vars)
|
||||
branched_count = stats.branched_count[var.index]
|
||||
branched_count_rel = 0.0
|
||||
branched_count_sum = sum(stats.branched_count[var.index])
|
||||
if branched_count_sum > 0
|
||||
branched_count_rel = branched_count / branched_count_sum
|
||||
end
|
||||
push!(
|
||||
features,
|
||||
Float32[
|
||||
nfrac,
|
||||
node.fractional_values[σ[i]],
|
||||
node.depth,
|
||||
pseudocost_scores[σ[i]][1],
|
||||
branched_count,
|
||||
branched_count_rel,
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
_set_node_bounds(node)
|
||||
no_improv_count, n_sb_calls = 0, 0
|
||||
max_score, max_var = pseudocost_scores[σ[1]], sorted_vars[1]
|
||||
max_score, max_var = (-Inf, -Inf), sorted_vars[1]
|
||||
for (i, var) in enumerate(sorted_vars)
|
||||
|
||||
# Decide whether to use strong branching
|
||||
use_strong_branch = true
|
||||
if n_sb_calls >= rule.max_sb_calls
|
||||
use_strong_branch = false
|
||||
@@ -95,9 +141,10 @@ function find_branching_var(
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if use_strong_branch
|
||||
# Compute strong branching score
|
||||
n_sb_calls += 1
|
||||
rule.n_sb_calls += 1
|
||||
score = _strong_branch_score(
|
||||
node = node,
|
||||
pool = pool,
|
||||
@@ -107,6 +154,13 @@ function find_branching_var(
|
||||
max_iterations = rule.max_iterations,
|
||||
aggregation = rule.aggregation,
|
||||
)
|
||||
|
||||
if rule.collect
|
||||
# Store training data
|
||||
push!(stats.score_var_names, name(node.mip, var))
|
||||
push!(stats.score_features, features[i])
|
||||
push!(stats.score_targets, score[1])
|
||||
end
|
||||
else
|
||||
score = pseudocost_scores[σ[i]]
|
||||
end
|
||||
@@ -119,5 +173,16 @@ function find_branching_var(
|
||||
no_improv_count <= rule.look_ahead || break
|
||||
end
|
||||
_unset_node_bounds(node)
|
||||
|
||||
# Update statistics
|
||||
stats.branched_count[max_var.index] += 1
|
||||
stats.num_strong_branch_calls += n_sb_calls
|
||||
|
||||
return max_var
|
||||
end
|
||||
|
||||
function collect!(rule::ReliabilityBranching, h5)
|
||||
h5.put_array("bb_score_var_names", to_str_array(rule.stats.score_var_names))
|
||||
h5.put_array("bb_score_features", vcat(rule.stats.score_features'...))
|
||||
h5.put_array("bb_score_targets", rule.stats.score_targets)
|
||||
end
|
||||
|
||||
@@ -21,12 +21,12 @@ end
|
||||
|
||||
function find_branching_var(rule::StrongBranching, node::Node, pool::NodePool)::Variable
|
||||
rb_rule = ReliabilityBranching(
|
||||
min_samples=typemax(Int),
|
||||
max_sb_calls=rule.max_calls,
|
||||
look_ahead=rule.look_ahead,
|
||||
side_effect=rule.side_effect,
|
||||
max_iterations=rule.max_iterations,
|
||||
aggregation=rule.aggregation,
|
||||
min_samples = typemax(Int),
|
||||
max_sb_calls = rule.max_calls,
|
||||
look_ahead = rule.look_ahead,
|
||||
side_effect = rule.side_effect,
|
||||
max_iterations = rule.max_iterations,
|
||||
aggregation = rule.aggregation,
|
||||
)
|
||||
return find_branching_var(rb_rule, node, pool)
|
||||
end
|
||||
|
||||
@@ -78,13 +78,9 @@ function _update_solution!(data::JuMPSolverData)
|
||||
rc += shadow_price(FixRef(var))
|
||||
end
|
||||
push!(data.reduced_costs, rc)
|
||||
|
||||
|
||||
# Basis status
|
||||
data.basis_status[var] = MOI.get(
|
||||
data.model,
|
||||
MOI.VariableBasisStatus(),
|
||||
var,
|
||||
)
|
||||
data.basis_status[var] = MOI.get(data.model, MOI.VariableBasisStatus(), var)
|
||||
end
|
||||
|
||||
try
|
||||
|
||||
@@ -17,7 +17,7 @@ function run_benchmarks(;
|
||||
solvers = OrderedDict(
|
||||
"baseline" => LearningSolver(optimizer),
|
||||
"ml-exact" => LearningSolver(optimizer),
|
||||
"ml-heuristic" => LearningSolver(optimizer, mode="heuristic"),
|
||||
"ml-heuristic" => LearningSolver(optimizer, mode = "heuristic"),
|
||||
)
|
||||
|
||||
#solve!(solvers["baseline"], train_instances, build_model; progress)
|
||||
@@ -43,7 +43,7 @@ function run_benchmarks(;
|
||||
end
|
||||
end
|
||||
CSV.write(output_filename, results)
|
||||
|
||||
|
||||
# fig_filename = "$(tempname()).svg"
|
||||
# df = pyimport("pandas").read_csv(csv_filename)
|
||||
# miplearn.benchmark.plot(df, output=fig_filename)
|
||||
|
||||
@@ -28,7 +28,7 @@ function runtests(optimizer_name, optimizer; large = true)
|
||||
@test BB.name(mip, mip.int_vars[1]) == "xab"
|
||||
@test BB.name(mip, mip.int_vars[2]) == "xac"
|
||||
@test BB.name(mip, mip.int_vars[3]) == "xad"
|
||||
|
||||
|
||||
@test mip.int_vars_lb[1] == 0.0
|
||||
@test mip.int_vars_ub[1] == 1.0
|
||||
|
||||
@@ -70,25 +70,25 @@ function runtests(optimizer_name, optimizer; large = true)
|
||||
end
|
||||
|
||||
@testset "varbranch" begin
|
||||
branch_rules = [
|
||||
BB.RandomBranching(),
|
||||
BB.FirstInfeasibleBranching(),
|
||||
BB.LeastInfeasibleBranching(),
|
||||
BB.MostInfeasibleBranching(),
|
||||
BB.PseudocostBranching(),
|
||||
BB.StrongBranching(),
|
||||
BB.ReliabilityBranching(),
|
||||
BB.HybridBranching(),
|
||||
BB.StrongBranching(aggregation=:min),
|
||||
BB.ReliabilityBranching(aggregation=:min),
|
||||
]
|
||||
for branch_rule in branch_rules
|
||||
for instance in ["bell5", "vpm2"]
|
||||
for instance in ["bell5", "vpm2"]
|
||||
for branch_rule in [
|
||||
BB.RandomBranching(),
|
||||
BB.FirstInfeasibleBranching(),
|
||||
BB.LeastInfeasibleBranching(),
|
||||
BB.MostInfeasibleBranching(),
|
||||
BB.PseudocostBranching(),
|
||||
BB.StrongBranching(),
|
||||
BB.ReliabilityBranching(),
|
||||
BB.HybridBranching(),
|
||||
BB.StrongBranching(aggregation = :min),
|
||||
BB.ReliabilityBranching(aggregation = :min, collect = true),
|
||||
]
|
||||
h5 = Hdf5Sample("$basepath/../fixtures/$instance.h5")
|
||||
mip_lower_bound = h5.get_scalar("mip_lower_bound")
|
||||
mip_upper_bound = h5.get_scalar("mip_upper_bound")
|
||||
mip_sense = h5.get_scalar("mip_sense")
|
||||
mip_primal_bound = mip_sense == "min" ? mip_upper_bound : mip_lower_bound
|
||||
mip_primal_bound =
|
||||
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
|
||||
h5.file.close()
|
||||
|
||||
mip = BB.init(optimizer)
|
||||
@@ -104,25 +104,35 @@ function runtests(optimizer_name, optimizer; large = true)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "collect" begin
|
||||
rule = BB.ReliabilityBranching(collect = true)
|
||||
BB.collect!(
|
||||
optimizer,
|
||||
"$basepath/../fixtures/bell5.mps.gz",
|
||||
node_limit = 100,
|
||||
print_interval = 10,
|
||||
branch_rule = rule,
|
||||
)
|
||||
n_sb = rule.stats.num_strong_branch_calls
|
||||
h5 = Hdf5Sample("$basepath/../fixtures/bell5.h5")
|
||||
@test size(h5.get_array("bb_var_pseudocost_up")) == (104,)
|
||||
@test size(h5.get_array("bb_score_var_names")) == (n_sb,)
|
||||
@test size(h5.get_array("bb_score_features")) == (n_sb, 6)
|
||||
@test size(h5.get_array("bb_score_targets")) == (n_sb,)
|
||||
h5.file.close()
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "BB" begin
|
||||
@time runtests(
|
||||
"Clp",
|
||||
optimizer_with_attributes(
|
||||
Clp.Optimizer,
|
||||
),
|
||||
)
|
||||
@time runtests("Clp", optimizer_with_attributes(Clp.Optimizer))
|
||||
|
||||
if is_gurobi_available
|
||||
using Gurobi
|
||||
@time runtests(
|
||||
"Gurobi",
|
||||
optimizer_with_attributes(
|
||||
Gurobi.Optimizer,
|
||||
"Threads" => 1,
|
||||
)
|
||||
optimizer_with_attributes(Gurobi.Optimizer, "Threads" => 1),
|
||||
)
|
||||
end
|
||||
|
||||
@@ -130,10 +140,7 @@ end
|
||||
using CPLEX
|
||||
@time runtests(
|
||||
"CPLEX",
|
||||
optimizer_with_attributes(
|
||||
CPLEX.Optimizer,
|
||||
"CPXPARAM_Threads" => 1,
|
||||
),
|
||||
optimizer_with_attributes(CPLEX.Optimizer, "CPXPARAM_Threads" => 1),
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
BIN
test/fixtures/bell5.h5
vendored
BIN
test/fixtures/bell5.h5
vendored
Binary file not shown.
@@ -33,9 +33,9 @@ using Cbc
|
||||
@testset "Save and load data" begin
|
||||
filename = tempname()
|
||||
data = KnapsackData(
|
||||
weights=[5.0, 5.0, 5.0],
|
||||
prices=[1.0, 1.0, 1.0],
|
||||
capacity=3.0,
|
||||
weights = [5.0, 5.0, 5.0],
|
||||
prices = [1.0, 1.0, 1.0],
|
||||
capacity = 3.0,
|
||||
)
|
||||
MIPLearn.save_data(filename, data)
|
||||
loaded = MIPLearn.load_data(filename)
|
||||
|
||||
Reference in New Issue
Block a user