|
|
|
@ -8,6 +8,8 @@ using HiGHS
|
|
|
|
|
using Random
|
|
|
|
|
using DataStructures
|
|
|
|
|
|
|
|
|
|
import ..H5FieldsExtractor
|
|
|
|
|
|
|
|
|
|
global ExpertDualGmiComponent = PyNULL()
|
|
|
|
|
global KnnDualGmiComponent = PyNULL()
|
|
|
|
|
|
|
|
|
@ -253,138 +255,6 @@ function collect_gmi_dual(
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function ExpertDualGmiComponent_before_mip(test_h5, model, _)
|
|
|
|
|
# Read cuts and optimal solution
|
|
|
|
|
h5 = H5File(test_h5, "r")
|
|
|
|
|
sol_opt_dict = Dict(
|
|
|
|
|
zip(
|
|
|
|
|
h5.get_array("static_var_names"),
|
|
|
|
|
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
cut_basis_vars = h5.get_array("cuts_basis_vars")
|
|
|
|
|
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
|
|
|
|
cut_rows = h5.get_array("cuts_rows")
|
|
|
|
|
obj_mip = h5.get_scalar("mip_lower_bound")
|
|
|
|
|
if obj_mip === nothing
|
|
|
|
|
obj_mip = h5.get_scalar("mip_obj_value")
|
|
|
|
|
end
|
|
|
|
|
h5.close()
|
|
|
|
|
|
|
|
|
|
# Initialize stats
|
|
|
|
|
stats_time_convert = 0
|
|
|
|
|
stats_time_tableau = 0
|
|
|
|
|
stats_time_gmi = 0
|
|
|
|
|
all_cuts = nothing
|
|
|
|
|
|
|
|
|
|
stats_time_convert = @elapsed begin
|
|
|
|
|
# Extract problem data
|
|
|
|
|
data = ProblemData(model)
|
|
|
|
|
|
|
|
|
|
# Construct optimal solution vector (with correct variable sequence)
|
|
|
|
|
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
|
|
|
|
|
|
|
|
|
# Assert optimal solution is feasible for the original problem
|
|
|
|
|
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
|
|
|
|
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
|
|
|
|
|
|
|
|
|
# Convert to standard form
|
|
|
|
|
data_s, transforms = convert_to_standard_form(data)
|
|
|
|
|
model_s = to_model(data_s)
|
|
|
|
|
set_optimizer(model_s, HiGHS.Optimizer)
|
|
|
|
|
relax_integrality(model_s)
|
|
|
|
|
|
|
|
|
|
# Convert optimal solution to standard form
|
|
|
|
|
sol_opt_s = forward(transforms, sol_opt)
|
|
|
|
|
|
|
|
|
|
# Assert converted solution is feasible for standard form problem
|
|
|
|
|
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
current_basis = nothing
|
|
|
|
|
for (r, row) in enumerate(cut_rows)
|
|
|
|
|
stats_time_tableau += @elapsed begin
|
|
|
|
|
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
|
|
|
|
|
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
|
|
|
|
|
current_basis = Basis(;
|
|
|
|
|
var_basic = cut_basis_vars[r, 1:vbb],
|
|
|
|
|
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
|
|
|
|
|
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
|
|
|
|
|
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
tableau = compute_tableau(data_s, current_basis, rows = [row])
|
|
|
|
|
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
|
|
|
|
end
|
|
|
|
|
stats_time_gmi += @elapsed begin
|
|
|
|
|
cuts_s = compute_gmi(data_s, tableau)
|
|
|
|
|
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
|
|
|
|
end
|
|
|
|
|
cuts = backwards(transforms, cuts_s)
|
|
|
|
|
assert_does_not_cut_off(cuts, sol_opt)
|
|
|
|
|
|
|
|
|
|
if all_cuts === nothing
|
|
|
|
|
all_cuts = cuts
|
|
|
|
|
else
|
|
|
|
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
|
|
|
|
|
all_cuts.lb = [all_cuts.lb; cuts.lb]
|
|
|
|
|
all_cuts.ub = [all_cuts.ub; cuts.ub]
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Strategy 1: Add all cuts during the first call
|
|
|
|
|
function cut_callback_1(cb_data)
|
|
|
|
|
if all_cuts !== nothing
|
|
|
|
|
constrs = build_constraints(model, all_cuts)
|
|
|
|
|
@info "Enforcing $(length(constrs)) cuts..."
|
|
|
|
|
for c in constrs
|
|
|
|
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
|
|
|
|
end
|
|
|
|
|
all_cuts = nothing
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Strategy 2: Add violated cuts repeatedly until unable to separate
|
|
|
|
|
callback_disabled = false
|
|
|
|
|
function cut_callback_2(cb_data)
|
|
|
|
|
if callback_disabled
|
|
|
|
|
return
|
|
|
|
|
end
|
|
|
|
|
x = all_variables(model)
|
|
|
|
|
x_val = callback_value.(cb_data, x)
|
|
|
|
|
lhs_val = all_cuts.lhs * x_val
|
|
|
|
|
is_violated = lhs_val .> all_cuts.ub
|
|
|
|
|
selected_idx = findall(is_violated .== true)
|
|
|
|
|
selected_cuts = ConstraintSet(
|
|
|
|
|
lhs=all_cuts.lhs[selected_idx, :],
|
|
|
|
|
ub=all_cuts.ub[selected_idx],
|
|
|
|
|
lb=all_cuts.lb[selected_idx],
|
|
|
|
|
)
|
|
|
|
|
constrs = build_constraints(model, selected_cuts)
|
|
|
|
|
if length(constrs) > 0
|
|
|
|
|
@info "Enforcing $(length(constrs)) cuts..."
|
|
|
|
|
for c in constrs
|
|
|
|
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
|
|
|
|
end
|
|
|
|
|
else
|
|
|
|
|
@info "No violated cuts found. Disabling callback."
|
|
|
|
|
callback_disabled = true
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Set up cut callback
|
|
|
|
|
set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
|
|
|
|
|
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
|
|
|
|
|
|
|
|
|
|
stats = Dict()
|
|
|
|
|
stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
|
|
|
|
|
stats["ExpertDualGmi: time convert"] = stats_time_convert
|
|
|
|
|
stats["ExpertDualGmi: time tableau"] = stats_time_tableau
|
|
|
|
|
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
|
|
|
|
|
return stats
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
|
|
|
|
|
vars = all_variables(model)
|
|
|
|
|
nrows, ncols = size(cs.lhs)
|
|
|
|
@ -599,15 +469,7 @@ function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function __init_gmi_dual__()
|
|
|
|
|
@pydef mutable struct Class1
|
|
|
|
|
function fit(_, _) end
|
|
|
|
|
function before_mip(self, test_h5, model, stats)
|
|
|
|
|
ExpertDualGmiComponent_before_mip(test_h5, model.inner, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(ExpertDualGmiComponent, Class1)
|
|
|
|
|
|
|
|
|
|
@pydef mutable struct Class2
|
|
|
|
|
@pydef mutable struct KnnDualGmiComponentPy
|
|
|
|
|
function __init__(self; extractor, k = 3, strategy = "near")
|
|
|
|
|
self.data = _KnnDualGmiData(; extractor, k, strategy)
|
|
|
|
|
end
|
|
|
|
@ -618,7 +480,23 @@ function __init_gmi_dual__()
|
|
|
|
|
return @time KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(KnnDualGmiComponent, Class2)
|
|
|
|
|
copy!(KnnDualGmiComponent, KnnDualGmiComponentPy)
|
|
|
|
|
|
|
|
|
|
@pydef mutable struct ExpertDualGmiComponentPy
|
|
|
|
|
function __init__(self)
|
|
|
|
|
self.inner = KnnDualGmiComponentPy(
|
|
|
|
|
extractor=H5FieldsExtractor(instance_fields=["static_var_obj_coeffs"]),
|
|
|
|
|
k=1,
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
function fit(self, train_h5)
|
|
|
|
|
end
|
|
|
|
|
function before_mip(self, test_h5, model, stats)
|
|
|
|
|
self.inner.fit([test_h5])
|
|
|
|
|
return self.inner.before_mip(test_h5, model, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent
|
|
|
|
|