mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 08:28:52 -06:00
Reformat source code
This commit is contained in:
@@ -43,8 +43,8 @@ function runtests()
|
||||
end
|
||||
|
||||
function format()
|
||||
JuliaFormatter.format(BASEDIR, verbose=true)
|
||||
JuliaFormatter.format("$BASEDIR/../../src", verbose=true)
|
||||
JuliaFormatter.format(BASEDIR, verbose = true)
|
||||
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
@@ -10,34 +10,32 @@ function gen_stab()
|
||||
randint = pyimport("scipy.stats").randint
|
||||
np.random.seed(42)
|
||||
gen = MaxWeightStableSetGenerator(
|
||||
w=uniform(10.0, scale=1.0),
|
||||
n=randint(low=50, high=51),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=true,
|
||||
w = uniform(10.0, scale = 1.0),
|
||||
n = randint(low = 50, high = 51),
|
||||
p = uniform(loc = 0.5, scale = 0.0),
|
||||
fix_graph = true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||
progress = true,
|
||||
verbose = true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_cuts()
|
||||
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
|
||||
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
|
||||
solver = LearningSolver(components = [comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||
)
|
||||
@test stats["Cuts: AOT"] > 0
|
||||
end
|
||||
|
||||
@@ -11,36 +11,34 @@ function gen_tsp()
|
||||
np.random.seed(42)
|
||||
|
||||
gen = TravelingSalesmanGenerator(
|
||||
x=uniform(loc=0.0, scale=1000.0),
|
||||
y=uniform(loc=0.0, scale=1000.0),
|
||||
n=randint(low=20, high=21),
|
||||
gamma=uniform(loc=1.0, scale=0.25),
|
||||
fix_cities=true,
|
||||
round=true,
|
||||
x = uniform(loc = 0.0, scale = 1000.0),
|
||||
y = uniform(loc = 0.0, scale = 1000.0),
|
||||
n = randint(low = 20, high = 21),
|
||||
gamma = uniform(loc = 1.0, scale = 0.25),
|
||||
fix_cities = true,
|
||||
round = true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="tsp-n20-")
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||
progress = true,
|
||||
verbose = true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_lazy()
|
||||
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
|
||||
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingLazyComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
|
||||
solver = LearningSolver(components = [comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
|
||||
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||
)
|
||||
@test stats["Lazy Constraints: AOT"] > 0
|
||||
end
|
||||
|
||||
@@ -8,11 +8,11 @@ using SCIP
|
||||
function test_problems_stab()
|
||||
nx = pyimport("networkx")
|
||||
data = MaxWeightStableSetData(
|
||||
graph=nx.gnp_random_graph(25, 0.5, seed=42),
|
||||
weights=repeat([1.0], 25),
|
||||
graph = nx.gnp_random_graph(25, 0.5, seed = 42),
|
||||
weights = repeat([1.0], 25),
|
||||
)
|
||||
h5 = H5File(tempname(), "w")
|
||||
model = build_stab_model_jump(data, optimizer=SCIP.Optimizer)
|
||||
model = build_stab_model_jump(data, optimizer = SCIP.Optimizer)
|
||||
model.extract_after_load(h5)
|
||||
model.optimize()
|
||||
model.extract_after_mip(h5)
|
||||
|
||||
@@ -10,17 +10,12 @@ function test_problems_tsp()
|
||||
squareform = pyimport("scipy.spatial.distance").squareform
|
||||
|
||||
data = TravelingSalesmanData(
|
||||
n_cities=6,
|
||||
distances=squareform(pdist([
|
||||
[0.0, 0.0],
|
||||
[1.0, 0.0],
|
||||
[2.0, 0.0],
|
||||
[3.0, 0.0],
|
||||
[0.0, 1.0],
|
||||
[3.0, 1.0],
|
||||
])),
|
||||
n_cities = 6,
|
||||
distances = squareform(
|
||||
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
|
||||
),
|
||||
)
|
||||
model = build_tsp_model_jump(data, optimizer=GLPK.Optimizer)
|
||||
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
|
||||
model.optimize()
|
||||
@test objective_value(model.inner) == 8.0
|
||||
return
|
||||
|
||||
@@ -46,7 +46,7 @@ function test_jld2()
|
||||
_TestStruct(2, [1.0, 2.0, 3.0]),
|
||||
_TestStruct(3, [3.0, 3.0, 3.0]),
|
||||
]
|
||||
filenames = write_jld2(data, dirname, prefix="obj")
|
||||
filenames = write_jld2(data, dirname, prefix = "obj")
|
||||
@test all(
|
||||
filenames .==
|
||||
["$dirname/obj00001.jld2", "$dirname/obj00002.jld2", "$dirname/obj00003.jld2"],
|
||||
|
||||
@@ -13,16 +13,16 @@ function test_usage()
|
||||
|
||||
@debug "Setting up LearningSolver..."
|
||||
solver = LearningSolver(
|
||||
components=[
|
||||
components = [
|
||||
IndependentVarsPrimalComponent(
|
||||
base_clf=SingleClassFix(
|
||||
base_clf = SingleClassFix(
|
||||
MinProbabilityClassifier(
|
||||
base_clf=LogisticRegression(),
|
||||
thresholds=[0.95, 0.95],
|
||||
base_clf = LogisticRegression(),
|
||||
thresholds = [0.95, 0.95],
|
||||
),
|
||||
),
|
||||
extractor=AlvLouWeh2017Extractor(),
|
||||
action=SetWarmStart(),
|
||||
extractor = AlvLouWeh2017Extractor(),
|
||||
action = SetWarmStart(),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user