parent
9c61b98cb9
commit
e9deac94a5
@ -1,182 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import ..H5File
|
||||
|
||||
using OrderedCollections
|
||||
using Statistics
|
||||
|
||||
|
||||
function collect_gmi(mps_filename; optimizer, max_rounds=10, max_cuts_per_round=100, atol=1e-4)
|
||||
@info mps_filename
|
||||
reset_timer!()
|
||||
|
||||
# Open HDF5 file
|
||||
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||
h5 = H5File(h5_filename)
|
||||
|
||||
# Read optimal solution
|
||||
sol_opt_dict = Dict(
|
||||
zip(
|
||||
h5.get_array("static_var_names"),
|
||||
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||
),
|
||||
)
|
||||
|
||||
# Read optimal value
|
||||
obj_mip = h5.get_scalar("mip_lower_bound")
|
||||
if obj_mip === nothing
|
||||
obj_mip = h5.get_scalar("mip_obj_value")
|
||||
end
|
||||
obj_lp = h5.get_scalar("lp_obj_value")
|
||||
h5.file.close()
|
||||
|
||||
# Define relative MIP gap
|
||||
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
||||
|
||||
# Initialize stats
|
||||
stats_obj = []
|
||||
stats_gap = []
|
||||
stats_ncuts = []
|
||||
stats_time_convert = 0
|
||||
stats_time_solve = 0
|
||||
stats_time_select = 0
|
||||
stats_time_tableau = 0
|
||||
stats_time_gmi = 0
|
||||
all_cuts = nothing
|
||||
|
||||
# Read problem
|
||||
model = read_from_file(mps_filename)
|
||||
|
||||
for round = 1:max_rounds
|
||||
@info "Round $(round)..."
|
||||
|
||||
stats_time_convert = @elapsed begin
|
||||
# Extract problem data
|
||||
data = ProblemData(model)
|
||||
|
||||
# Construct optimal solution vector (with correct variable sequence)
|
||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||
|
||||
# Assert optimal solution is feasible for the original problem
|
||||
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||
|
||||
# Convert to standard form
|
||||
data_s, transforms = convert_to_standard_form(data)
|
||||
model_s = to_model(data_s)
|
||||
set_optimizer(model_s, optimizer)
|
||||
relax_integrality(model_s)
|
||||
|
||||
# Convert optimal solution to standard form
|
||||
sol_opt_s = forward(transforms, sol_opt)
|
||||
|
||||
# Assert converted solution is feasible for standard form problem
|
||||
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||
end
|
||||
|
||||
# Optimize standard form
|
||||
optimize!(model_s)
|
||||
stats_time_solve += solve_time(model_s)
|
||||
obj = objective_value(model_s) + data_s.obj_offset
|
||||
|
||||
if round == 1
|
||||
# Assert standard form problem has same value as original
|
||||
assert_eq(obj, obj_lp)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
push!(stats_ncuts, 0)
|
||||
end
|
||||
if termination_status(model_s) != MOI.OPTIMAL
|
||||
return
|
||||
end
|
||||
|
||||
# Select tableau rows
|
||||
basis = get_basis(model_s)
|
||||
sol_frac = get_x(model_s)
|
||||
stats_time_select += @elapsed begin
|
||||
selected_rows =
|
||||
select_gmi_rows(data_s, basis, sol_frac, max_rows=max_cuts_per_round)
|
||||
end
|
||||
|
||||
# Compute selected tableau rows
|
||||
stats_time_tableau += @elapsed begin
|
||||
tableau = compute_tableau(data_s, basis, sol_frac, rows=selected_rows)
|
||||
|
||||
# Assert tableau rows have been computed correctly
|
||||
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
|
||||
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
||||
end
|
||||
|
||||
# Compute GMI cuts
|
||||
stats_time_gmi += @elapsed begin
|
||||
cuts_s = compute_gmi(data_s, tableau)
|
||||
|
||||
# Assert cuts have been generated correctly
|
||||
assert_cuts_off(cuts_s, sol_frac)
|
||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||
|
||||
# Abort if no cuts are left
|
||||
if length(cuts_s.lb) == 0
|
||||
@info "No cuts generated. Stopping."
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
# Add GMI cuts to original problem
|
||||
cuts = backwards(transforms, cuts_s)
|
||||
assert_does_not_cut_off(cuts, sol_opt)
|
||||
constrs = add_constraint_set(model, cuts)
|
||||
|
||||
# Optimize original form
|
||||
set_optimizer(model, optimizer)
|
||||
undo_relax = relax_integrality(model)
|
||||
optimize!(model)
|
||||
obj = objective_value(model)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
|
||||
# Store useful cuts; drop useless ones from the problem
|
||||
useful = [abs(shadow_price(c)) > atol for c in constrs]
|
||||
drop = findall(useful .== false)
|
||||
keep = findall(useful .== true)
|
||||
delete.(model, constrs[drop])
|
||||
if all_cuts === nothing
|
||||
all_cuts = cuts
|
||||
else
|
||||
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
|
||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
||||
end
|
||||
push!(stats_ncuts, length(all_cuts.lb))
|
||||
|
||||
undo_relax()
|
||||
end
|
||||
|
||||
# Store cuts
|
||||
if all_cuts !== nothing
|
||||
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||
h5 = H5File(h5_filename)
|
||||
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||
h5.put_array("cuts_lb", all_cuts.lb)
|
||||
h5.put_array("cuts_ub", all_cuts.ub)
|
||||
h5.file.close()
|
||||
end
|
||||
|
||||
return OrderedDict(
|
||||
"instance" => mps_filename,
|
||||
"max_rounds" => max_rounds,
|
||||
"rounds" => length(stats_obj) - 1,
|
||||
"time_convert" => stats_time_convert,
|
||||
"time_solve" => stats_time_solve,
|
||||
"time_tableau" => stats_time_tableau,
|
||||
"time_gmi" => stats_time_gmi,
|
||||
"obj_mip" => obj_mip,
|
||||
"stats_obj" => stats_obj,
|
||||
"stats_gap" => stats_gap,
|
||||
"stats_ncuts" => stats_ncuts,
|
||||
)
|
||||
end
|
||||
|
||||
export collect_gmi
|
Loading…
Reference in new issue