Reformat source code

feature/replay^2
Alinson S. Xavier 1 year ago
parent e9deac94a5
commit 93e604817b
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -9,7 +9,13 @@ using SparseArrays
using Statistics
using TimerOutputs
function collect_gmi(mps_filename; optimizer, max_rounds=10, max_cuts_per_round=100, atol=1e-4)
function collect_gmi(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 100,
atol = 1e-4,
)
@info mps_filename
reset_timer!()
@ -182,8 +188,7 @@ end
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4)
candidate_rows = [
r for
r in 1:length(basis.var_basic) if (
r for r = 1:length(basis.var_basic) if (
(data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol) &&
(frac2(x[basis.var_basic[r]]) > atol)
@ -204,7 +209,7 @@ function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
lhs_J = Int[]
lhs_V = Float64[]
@timeit "Compute coefficients" begin
for k in 1:nnz(tableau.lhs)
for k = 1:nnz(tableau.lhs)
i::Int = tableau_I[k]
j::Int = tableau_J[k]
v::Float64 = 0.0
@ -235,4 +240,5 @@ function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
return ConstraintSet(; lhs, ub, lb)
end
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi
export compute_gmi,
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi

@ -53,8 +53,14 @@ function __init_components__()
)
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
copy!(MemorizingCutsComponent, pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent)
copy!(MemorizingLazyComponent, pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent)
copy!(
MemorizingCutsComponent,
pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent,
)
copy!(
MemorizingLazyComponent,
pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent,
)
end
export MinProbabilityClassifier,

@ -46,7 +46,7 @@ end
function write_jld2(
objs::Vector,
dirname::AbstractString;
prefix::AbstractString=""
prefix::AbstractString = "",
)::Vector{String}
mkpath(dirname)
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]

@ -10,7 +10,10 @@ global MaxWeightStableSetGenerator = PyNULL()
function __init_problems_stab__()
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
copy!(MaxWeightStableSetGenerator, pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator)
copy!(
MaxWeightStableSetGenerator,
pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator,
)
end
function build_stab_model_jump(data::Any; optimizer = HiGHS.Optimizer)
@ -50,11 +53,7 @@ function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
end
end
return JumpModel(
model,
cuts_separate=cuts_separate,
cuts_enforce=cuts_enforce,
)
return JumpModel(model, cuts_separate = cuts_separate, cuts_enforce = cuts_enforce)
end
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump

@ -9,7 +9,10 @@ global TravelingSalesmanGenerator = PyNULL()
function __init_problems_tsp__()
copy!(TravelingSalesmanData, pyimport("miplearn.problems.tsp").TravelingSalesmanData)
copy!(TravelingSalesmanGenerator, pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator)
copy!(
TravelingSalesmanGenerator,
pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator,
)
end
function build_tsp_model_jump(data::Any; optimizer)
@ -19,17 +22,15 @@ function build_tsp_model_jump(data::Any; optimizer)
data = read_pkl_gz(data)
end
model = Model(optimizer)
edges = [(i, j) for i in 1:data.n_cities for j in (i+1):data.n_cities]
edges = [(i, j) for i = 1:data.n_cities for j = (i+1):data.n_cities]
x = @variable(model, x[edges], Bin)
@objective(model, Min, sum(
x[(i, j)] * data.distances[i, j] for (i, j) in edges
))
@objective(model, Min, sum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
# Eq: Must choose two edges adjacent to each node
@constraint(
model,
eq_degree[i in 1:data.n_cities],
sum(x[(min(i, j), max(i, j))] for j in 1:data.n_cities if i != j) == 2
sum(x[(min(i, j), max(i, j))] for j = 1:data.n_cities if i != j) == 2
)
function lazy_separate(cb_data)
@ -41,10 +42,8 @@ function build_tsp_model_jump(data::Any; optimizer)
for component in nx.connected_components(graph)
if length(component) < data.n_cities
cut_edges = [
[e[1], e[2]]
for e in edges
if (e[1] component && e[2] component)
||
[e[1], e[2]] for
e in edges if (e[1] component && e[2] component) ||
(e[1] component && e[2] component)
]
push!(violations, cut_edges)

@ -18,7 +18,7 @@ Base.@kwdef mutable struct _JumpModelExtData
cuts_separate::Union{Function,Nothing} = nothing
lazy_enforce::Union{Function,Nothing} = nothing
lazy_separate::Union{Function,Nothing} = nothing
lp_optimizer
lp_optimizer::Any
end
function JuMP.copy_extension_data(
@ -26,9 +26,7 @@ function JuMP.copy_extension_data(
new_model::AbstractModel,
::AbstractModel,
)
new_model.ext[:miplearn] = _JumpModelExtData(
lp_optimizer=old_ext.lp_optimizer
)
new_model.ext[:miplearn] = _JumpModelExtData(lp_optimizer = old_ext.lp_optimizer)
end
# -----------------------------------------------------------------------------

@ -29,9 +29,7 @@ end
function test_cuts()
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)

@ -32,9 +32,7 @@ end
function test_lazy()
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)

@ -11,14 +11,9 @@ function test_problems_tsp()
data = TravelingSalesmanData(
n_cities = 6,
distances=squareform(pdist([
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
])),
distances = squareform(
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
),
)
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
model.optimize()

Loading…
Cancel
Save