mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 08:28:52 -06:00
compute_tableau: Compute directly in compressed row format
This commit is contained in:
@@ -74,15 +74,15 @@ function compute_tableau(
|
||||
factor = klu(sparse(lhs_b'))
|
||||
end
|
||||
|
||||
@timeit "Initialize sparse arrays" begin
|
||||
tableau_rhs::Array{Float64} = zeros(length(rows))
|
||||
tableau_lhs_I::Array{Int} = Int[]
|
||||
tableau_lhs_J::Array{Int} = Int[]
|
||||
tableau_lhs_V::Array{Float64} = Float64[]
|
||||
estimated_nnz::Int = round(length(rows) * ncols * estimated_density)
|
||||
sizehint!(tableau_lhs_I, estimated_nnz)
|
||||
sizehint!(tableau_lhs_J, estimated_nnz)
|
||||
sizehint!(tableau_lhs_V, estimated_nnz)
|
||||
@timeit "Initialize arrays" begin
|
||||
num_rows = length(rows)
|
||||
tableau_rhs::Array{Float64} = zeros(num_rows)
|
||||
tableau_rowptr::Array{Int} = zeros(Int, num_rows + 1)
|
||||
tableau_colval::Array{Int} = Int[]
|
||||
tableau_nzval::Array{Float64} = Float64[]
|
||||
estimated_nnz::Int = round(num_rows * ncols * estimated_density)
|
||||
sizehint!(tableau_colval, estimated_nnz)
|
||||
sizehint!(tableau_nzval, estimated_nnz)
|
||||
e::Array{Float64} = zeros(nrows)
|
||||
sol::Array{Float64} = zeros(nrows)
|
||||
tableau_row::Array{Float64} = zeros(ncols)
|
||||
@@ -90,49 +90,48 @@ function compute_tableau(
|
||||
|
||||
A = data.constr_lhs'
|
||||
b = data.constr_ub
|
||||
tableau_rowptr[1] = 1
|
||||
|
||||
for k in eachindex(rows)
|
||||
@timeit "Solve" begin
|
||||
fill!(e, 0.0)
|
||||
e[rows[k]] = 1.0
|
||||
ldiv!(sol, factor, e)
|
||||
end
|
||||
|
||||
@timeit "Compute row" begin
|
||||
mul!(tableau_row, A, sol)
|
||||
tableau_rhs[k] = dot(sol, b)
|
||||
end
|
||||
|
||||
needed_space = length(tableau_lhs_I) + ncols
|
||||
if needed_space > estimated_nnz
|
||||
@timeit "Grow arrays" begin
|
||||
estimated_nnz *= 2
|
||||
sizehint!(tableau_lhs_I, estimated_nnz)
|
||||
sizehint!(tableau_lhs_J, estimated_nnz)
|
||||
sizehint!(tableau_lhs_V, estimated_nnz)
|
||||
@timeit "Process rows" begin
|
||||
for k in eachindex(rows)
|
||||
@timeit "Solve" begin
|
||||
fill!(e, 0.0)
|
||||
e[rows[k]] = 1.0
|
||||
ldiv!(sol, factor, e)
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Collect nonzeros" begin
|
||||
for j in 1:ncols
|
||||
val = tableau_row[j]
|
||||
if abs(val) > tol
|
||||
push!(tableau_lhs_I, k)
|
||||
push!(tableau_lhs_J, j)
|
||||
push!(tableau_lhs_V, val)
|
||||
@timeit "Compute row" begin
|
||||
mul!(tableau_row, A, sol)
|
||||
tableau_rhs[k] = dot(sol, b)
|
||||
end
|
||||
needed_space = length(tableau_colval) + ncols
|
||||
if needed_space > estimated_nnz
|
||||
@timeit "Grow arrays" begin
|
||||
estimated_nnz *= 2
|
||||
sizehint!(tableau_colval, estimated_nnz)
|
||||
sizehint!(tableau_nzval, estimated_nnz)
|
||||
end
|
||||
end
|
||||
@timeit "Collect nonzeros for row" begin
|
||||
for j in 1:ncols
|
||||
val = tableau_row[j]
|
||||
if abs(val) > tol
|
||||
push!(tableau_colval, j)
|
||||
push!(tableau_nzval, val)
|
||||
end
|
||||
end
|
||||
end
|
||||
tableau_rowptr[k + 1] = length(tableau_colval) + 1
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Shrink arrays" begin
|
||||
sizehint!(tableau_lhs_I, 0)
|
||||
sizehint!(tableau_lhs_J, 0)
|
||||
sizehint!(tableau_lhs_V, 0)
|
||||
sizehint!(tableau_colval, length(tableau_colval))
|
||||
sizehint!(tableau_nzval, length(tableau_nzval))
|
||||
end
|
||||
|
||||
@timeit "Build sparse matrix" begin
|
||||
tableau_lhs = sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
|
||||
tableau_lhs_transposed = SparseMatrixCSC(ncols, num_rows, tableau_rowptr, tableau_colval, tableau_nzval)
|
||||
tableau_lhs = transpose(tableau_lhs_transposed)
|
||||
end
|
||||
|
||||
@timeit "Compute tableau objective row" begin
|
||||
|
||||
Reference in New Issue
Block a user