Merge branch 'dev' into feature/replay

feature/replay
Alinson S. Xavier 10 months ago
commit cbedb02a9f

@ -1,7 +1,7 @@
name = "MIPLearn"
uuid = "2b1277c3-b477-4c49-a15e-7ba350325c68"
authors = ["Alinson S Xavier <git@axavier.org>"]
version = "0.3.0"
version = "0.4.0"
[deps]
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
@ -9,31 +9,35 @@ DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
[compat]
Conda = "1"
DataStructures = "0.18"
HDF5 = "0.16"
HiGHS = "1"
JLD2 = "0.4"
JSON = "0.21"
JuMP = "1"
KLU = "0.4"
MathOptInterface = "1"
OrderedCollections = "1"
PyCall = "1"
Requires = "1"
Statistics = "1"
TimerOutputs = "0.5"
julia = "1"
Conda="1"
DataStructures="0.18"
HDF5="0.16"
HiGHS="1"
JLD2="0.4"
JuMP="1"
KLU="0.4"
MathOptInterface="1"
OrderedCollections="1"
PyCall="1"
Requires="1"
Statistics="1"
TimerOutputs="0.5"

2
deps/build.jl vendored

@ -5,7 +5,7 @@ function install_miplearn()
Conda.update()
pip = joinpath(dirname(pyimport("sys").executable), "pip")
isfile(pip) || error("$pip: invalid path")
run(`$pip install miplearn==0.3.0`)
run(`$pip install miplearn==0.4.0`)
end
install_miplearn()

@ -4,15 +4,22 @@
module Cuts
using PyCall
import ..to_str_array
include("tableau/structs.jl")
# include("blackbox/cplex.jl")
include("tableau/collect.jl")
include("tableau/numerics.jl")
include("tableau/gmi.jl")
include("tableau/gmi_dual.jl")
include("tableau/moi.jl")
include("tableau/tableau.jl")
include("tableau/transform.jl")
function __init__()
__init_gmi_dual__()
end
end # module

@ -1,184 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..H5File
using OrderedCollections
function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_round = 100)
@info mps_filename
reset_timer!()
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = nothing
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
# Read problem
model = read_from_file(mps_filename)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
@assert data_s.constr_lhs * sol_opt_s data_s.constr_lb
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s) + data_s.obj_offset
if obj_lp === nothing
obj_lp = obj
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Select tableau rows
basis = get_basis(model_s)
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
@assert tableau.lhs * sol_frac tableau.rhs
@assert tableau.lhs * sol_opt_s tableau.rhs
end
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
try
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
catch
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
break
end
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
break
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
constrs = add_constraint_set(model, cuts)
# Optimize original form
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [abs(shadow_price(c)) > 1e-3 for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
delete.(model, constrs[drop])
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
end
push!(stats_ncuts, length(all_cuts.lb))
undo_relax()
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"obj_mip" => obj_mip,
"obj_lp" => obj_lp,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
)
end
export collect_gmi

@ -2,16 +2,196 @@
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..H5File
using OrderedCollections
using SparseArrays
using Statistics
using TimerOutputs
@inline frac(x::Float64) = x - floor(x)
function collect_gmi(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 100,
atol = 1e-4,
)
reset_timer!()
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = h5.get_scalar("lp_obj_value")
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
# Read problem
model = read_from_file(mps_filename)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s)
if round == 1
# Assert standard form problem has same value as original
assert_eq(obj, obj_lp)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Select tableau rows
basis = get_basis(model_s)
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Stopping."
break
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
constrs = add_constraint_set(model, cuts)
# Optimize original form
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [abs(shadow_price(c)) > atol for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
delete.(model, constrs[drop])
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
all_cuts.ub = [all_cuts.ub; cuts.ub[keep]]
end
push!(stats_ncuts, length(all_cuts.lb))
undo_relax()
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"obj_mip" => obj_mip,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
)
end
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4)
candidate_rows = [
r for
r = 1:length(basis.var_basic) if (data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol)
r for r = 1:length(basis.var_basic) if (
(data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol) &&
(frac2(x[basis.var_basic[r]]) > atol)
)
]
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
score = abs.(candidate_vals .- 0.5)
@ -19,10 +199,10 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
end
function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::ConstraintSet
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
nrows, ncols = size(tableau.lhs)
ub = Float64[Inf for _ = 1:nrows]
lb = Float64[0.999 for _ = 1:nrows]
lb = Float64[0.9999 for _ = 1:nrows]
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
lhs_I = Int[]
lhs_J = Int[]
@ -30,23 +210,25 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
@timeit "Compute coefficients" begin
for k = 1:nnz(tableau.lhs)
i::Int = tableau_I[k]
j::Int = tableau_J[k]
v::Float64 = 0.0
alpha_j = frac(tableau_V[k])
frac_alpha_j = frac(tableau_V[k])
alpha_j = tableau_V[k]
beta = frac(tableau.rhs[i])
if data.var_types[i] == "C"
if data.var_types[j] == 'C'
if alpha_j >= 0
v = alpha_j / beta
else
v = alpha_j / (1 - beta)
v = -alpha_j / (1 - beta)
end
else
if alpha_j <= beta
v = alpha_j / beta
if frac_alpha_j < beta
v = frac_alpha_j / beta
else
v = (1 - alpha_j) / (1 - beta)
v = (1 - frac_alpha_j) / (1 - beta)
end
end
if abs(v) > tol
if abs(v) > 1e-8
push!(lhs_I, i)
push!(lhs_J, tableau_J[k])
push!(lhs_V, v)
@ -57,28 +239,5 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
return ConstraintSet(; lhs, ub, lb)
end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
throw(ErrorException("inequality fails to cut off fractional solution"))
end
end
end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
ub = cuts.ub[i]
lb = cuts.lb[i]
if (val >= ub) || (val <= lb)
throw(
ErrorException(
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
),
)
end
end
end
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off
export compute_gmi,
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi

@ -0,0 +1,625 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Printf
using JuMP
using HiGHS
using Random
using DataStructures
global ExpertDualGmiComponent = PyNULL()
global KnnDualGmiComponent = PyNULL()
Base.@kwdef mutable struct _KnnDualGmiData
k = nothing
extractor = nothing
train_h5 = nothing
model = nothing
strategy = nothing
end
function collect_gmi_dual(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 500,
)
reset_timer!()
@timeit "Read H5" begin
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename, "r")
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
obj_mip = h5.get_scalar("mip_obj_value")
h5.file.close()
end
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(obj_mip)
@timeit "Initialize" begin
stats_obj = []
stats_gap = []
stats_ncuts = []
original_basis = nothing
all_cuts = nothing
all_cuts_bases = nothing
all_cuts_rows = nothing
last_round_obj = nothing
end
@timeit "Read problem" begin
model = read_from_file(mps_filename)
set_optimizer(model, optimizer)
obj_original = objective_function(model)
end
for round = 1:max_rounds
@info "Round $(round)..."
@timeit "Convert model to standard form" begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
@timeit "Optimize standard model" begin
@info "Optimizing standard model..."
optimize!(model_s)
obj = objective_value(model_s)
if round == 1
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
else
if obj last_round_obj
@info ("No improvement in obj value. Aborting.")
break
end
end
if termination_status(model_s) != MOI.OPTIMAL
error("Non-optimal termination status")
end
last_round_obj = obj
end
@timeit "Select tableau rows" begin
basis = get_basis(model_s)
if round == 1
original_basis = basis
end
sol_frac = get_x(model_s)
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
@timeit "Compute tableau rows" begin
tableau = compute_tableau(data_s, basis, x = sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs, atol=1e-3)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs, atol=1e-3)
end
@timeit "Compute GMI cuts" begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
break
else
@info "Generated $(length(cuts_s.lb)) cuts"
end
end
@timeit "Add GMI cuts to original model" begin
@timeit "Convert to original form" begin
cuts = backwards(transforms, cuts_s)
end
@timeit "Prepare bv" begin
bv = repeat([basis], length(selected_rows))
end
@timeit "Append matrices" begin
if round == 1
all_cuts = cuts
all_cuts_bases = bv
all_cuts_rows = selected_rows
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
all_cuts.lb = [all_cuts.lb; cuts.lb]
all_cuts.ub = [all_cuts.ub; cuts.ub]
all_cuts_bases = [all_cuts_bases; bv]
all_cuts_rows = [all_cuts_rows; selected_rows]
end
end
@timeit "Add to model" begin
@info "Adding $(length(all_cuts.lb)) constraints to original model"
constrs, gmi_exps = add_constraint_set_dual_v2(model, all_cuts)
end
end
@timeit "Optimize original model" begin
set_objective_function(model, obj_original)
undo_relax = relax_integrality(model)
@info "Optimizing original model (constr)..."
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
sp = [shadow_price(c) for c in constrs]
undo_relax()
useful = [abs(sp[i]) > 1e-6 for (i, _) in enumerate(constrs)]
keep = findall(useful .== true)
end
@timeit "Filter out useless cuts" begin
@info "Keeping $(length(keep)) useful cuts"
all_cuts.lhs = all_cuts.lhs[keep, :]
all_cuts.lb = all_cuts.lb[keep]
all_cuts.ub = all_cuts.ub[keep]
all_cuts_bases = all_cuts_bases[keep, :]
all_cuts_rows = all_cuts_rows[keep, :]
push!(stats_ncuts, length(all_cuts_rows))
if isempty(keep)
break
end
end
@timeit "Update obj function of original model" begin
delete.(model, constrs)
set_objective_function(
model,
obj_original -
sum(sp[i] * gmi_exps[i] for (i, c) in enumerate(constrs) if useful[i]),
)
end
end
@timeit "Store cuts in H5 file" begin
if all_cuts !== nothing
ncuts = length(all_cuts_rows)
total =
length(original_basis.var_basic) +
length(original_basis.var_nonbasic) +
length(original_basis.constr_basic) +
length(original_basis.constr_nonbasic)
all_cuts_basis_sizes = Array{Int64,2}(undef, ncuts, 4)
all_cuts_basis_vars = Array{Int64,2}(undef, ncuts, total)
for i = 1:ncuts
vb = all_cuts_bases[i].var_basic
vn = all_cuts_bases[i].var_nonbasic
cb = all_cuts_bases[i].constr_basic
cn = all_cuts_bases[i].constr_nonbasic
all_cuts_basis_sizes[i, :] = [length(vb) length(vn) length(cb) length(cn)]
all_cuts_basis_vars[i, :] = [vb' vn' cb' cn']
end
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.put_array("cuts_basis_vars", all_cuts_basis_vars)
h5.put_array("cuts_basis_sizes", all_cuts_basis_sizes)
h5.put_array("cuts_rows", all_cuts_rows)
h5.file.close()
end
end
to = TimerOutputs.get_defaulttimer()
stats_time = TimerOutputs.tottime(to) / 1e9
print_timer()
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"obj_mip" => obj_mip,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
"stats_time" => stats_time,
)
end
function ExpertDualGmiComponent_before_mip(test_h5, model, _)
# Read cuts and optimal solution
h5 = H5File(test_h5, "r")
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
cut_basis_vars = h5.get_array("cuts_basis_vars")
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
cut_rows = h5.get_array("cuts_rows")
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
h5.close()
# Initialize stats
stats_time_convert = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, HiGHS.Optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
current_basis = nothing
for (r, row) in enumerate(cut_rows)
stats_time_tableau += @elapsed begin
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
current_basis = Basis(;
var_basic = cut_basis_vars[r, 1:vbb],
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
end
tableau = compute_tableau(data_s, current_basis, rows = [row])
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
assert_does_not_cut_off(cuts_s, sol_opt_s)
end
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
all_cuts.lb = [all_cuts.lb; cuts.lb]
all_cuts.ub = [all_cuts.ub; cuts.ub]
end
end
# Strategy 1: Add all cuts during the first call
function cut_callback_1(cb_data)
if all_cuts !== nothing
constrs = build_constraints(model, all_cuts)
@info "Enforcing $(length(constrs)) cuts..."
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
all_cuts = nothing
end
end
# Strategy 2: Add violated cuts repeatedly until unable to separate
callback_disabled = false
function cut_callback_2(cb_data)
if callback_disabled
return
end
x = all_variables(model)
x_val = callback_value.(cb_data, x)
lhs_val = all_cuts.lhs * x_val
is_violated = lhs_val .> all_cuts.ub
selected_idx = findall(is_violated .== true)
selected_cuts = ConstraintSet(
lhs=all_cuts.lhs[selected_idx, :],
ub=all_cuts.ub[selected_idx],
lb=all_cuts.lb[selected_idx],
)
constrs = build_constraints(model, selected_cuts)
if length(constrs) > 0
@info "Enforcing $(length(constrs)) cuts..."
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
else
@info "No violated cuts found. Disabling callback."
callback_disabled = true
end
end
# Set up cut callback
set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
stats = Dict()
stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
stats["ExpertDualGmi: time convert"] = stats_time_convert
stats["ExpertDualGmi: time tableau"] = stats_time_tableau
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
return stats
end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, ncols = size(cs.lhs)
@timeit "Transpose LHS" begin
lhs_t = spzeros(ncols, nrows)
ftranspose!(lhs_t, cs.lhs, x -> x)
lhs_t_rows = rowvals(lhs_t)
lhs_t_vals = nonzeros(lhs_t)
end
constrs = []
gmi_exps = []
for i = 1:nrows
c = nothing
gmi_exp = nothing
gmi_exp2 = nothing
@timeit "Build expr" begin
expr = AffExpr()
for k in nzrange(lhs_t, i)
add_to_expression!(expr, lhs_t_vals[k], vars[lhs_t_rows[k]])
end
end
@timeit "Add constraints" begin
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= expr)
gmi_exp = cs.lb[i] - expr
elseif isinf(cs.lb[i])
c = @constraint(model, expr <= cs.ub[i])
gmi_exp = expr - cs.ub[i]
else
c = @constraint(model, cs.lb[i] <= expr <= cs.ub[i])
gmi_exp = cs.lb[i] - expr
gmi_exp2 = expr - cs.ub[i]
end
end
@timeit "Update structs" begin
push!(constrs, c)
push!(gmi_exps, gmi_exp)
if !isnothing(gmi_exp2)
push!(gmi_exps, gmi_exp2)
end
end
end
return constrs, gmi_exps
end
function _dualgmi_features(h5_filename, extractor)
h5 = H5File(h5_filename, "r")
try
return extractor.get_instance_features(h5)
finally
h5.close()
end
end
function _dualgmi_generate(train_h5, model)
@timeit "Read problem data" begin
data = ProblemData(model)
end
@timeit "Convert to standard form" begin
data_s, transforms = convert_to_standard_form(data)
end
@timeit "Collect cuts from H5 files" begin
vars_to_unique_basis_offset = Dict()
unique_basis_vars = nothing
unique_basis_sizes = nothing
unique_basis_rows = nothing
for h5_filename in train_h5
h5 = H5File(h5_filename, "r")
cut_basis_vars = h5.get_array("cuts_basis_vars")
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
cut_rows = h5.get_array("cuts_rows")
ncuts, nvars = size(cut_basis_vars)
if unique_basis_vars === nothing
unique_basis_vars = Matrix{Int}(undef, 0, nvars)
unique_basis_sizes = Matrix{Int}(undef, 0, 4)
unique_basis_rows = Dict{Int,Set{Int}}()
end
for i in 1:ncuts
vars = cut_basis_vars[i, :]
sizes = cut_basis_sizes[i, :]
row = cut_rows[i]
if vars keys(vars_to_unique_basis_offset)
offset = size(unique_basis_vars)[1] + 1
vars_to_unique_basis_offset[vars] = offset
unique_basis_vars = [unique_basis_vars; vars']
unique_basis_sizes = [unique_basis_sizes; sizes']
unique_basis_rows[offset] = Set()
end
offset = vars_to_unique_basis_offset[vars]
push!(unique_basis_rows[offset], row)
end
h5.close()
end
end
@timeit "Compute tableaus and cuts" begin
all_cuts = nothing
for (offset, rows) in unique_basis_rows
try
vbb, vnn, cbb, cnn = unique_basis_sizes[offset, :]
current_basis = Basis(;
var_basic = unique_basis_vars[offset, 1:vbb],
var_nonbasic = unique_basis_vars[offset, vbb+1:vbb+vnn],
constr_basic = unique_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = unique_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
cuts_s = compute_gmi(data_s, tableau)
cuts = backwards(transforms, cuts_s)
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
all_cuts.lb = [all_cuts.lb; cuts.lb]
all_cuts.ub = [all_cuts.ub; cuts.ub]
end
catch e
if isa(e, AssertionError)
@warn "Numerical error detected. Skipping cuts from current tableau."
continue
else
rethrow(e)
end
end
end
end
return all_cuts
end
function _dualgmi_set_callback(model, all_cuts)
function cut_callback(cb_data)
if all_cuts !== nothing
constrs = build_constraints(model, all_cuts)
@info "Enforcing $(length(constrs)) cuts..."
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
all_cuts = nothing
end
end
set_attribute(model, MOI.UserCutCallback(), cut_callback)
end
function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5)
x = hcat([_dualgmi_features(filename, data.extractor) for filename in train_h5]...)'
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = length(train_h5))
model.fit(x)
data.model = model
data.train_h5 = train_h5
end
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _)
reset_timer!()
@timeit "Extract features" begin
x = _dualgmi_features(test_h5, data.extractor)
x = reshape(x, 1, length(x))
end
@timeit "Find neighbors" begin
neigh_dist, neigh_ind = data.model.kneighbors(x, return_distance = true)
neigh_ind = neigh_ind .+ 1
N = length(neigh_dist)
k = min(N, data.k)
if data.strategy == "near"
selected = collect(1:k)
elseif data.strategy == "far"
selected = collect((N - k + 1) : N)
elseif data.strategy == "rand"
selected = shuffle(collect(1:N))[1:k]
else
error("unknown strategy: $(data.strategy)")
end
@info "Dual GMI: Selected neighbors ($(data.strategy)):"
neigh_dist = neigh_dist[selected]
neigh_ind = neigh_ind[selected]
for i in 1:k
h5_filename = data.train_h5[neigh_ind[i]]
dist = neigh_dist[i]
@info " $(h5_filename) dist=$(dist)"
end
end
@info "Dual GMI: Generating cuts..."
@timeit "Generate cuts" begin
time_generate = @elapsed begin
cuts = _dualgmi_generate(data.train_h5[neigh_ind], model)
end
@info "Dual GMI: Generated $(length(cuts.lb)) unique cuts in $(time_generate) seconds"
end
@timeit "Set callback" begin
_dualgmi_set_callback(model, cuts)
end
print_timer()
stats = Dict()
stats["KnnDualGmi: k"] = k
stats["KnnDualGmi: strategy"] = data.strategy
stats["KnnDualGmi: cuts"] = length(cuts.lb)
stats["KnnDualGmi: time generate"] = time_generate
return stats
end
function __init_gmi_dual__()
@pydef mutable struct Class1
function fit(_, _) end
function before_mip(self, test_h5, model, stats)
ExpertDualGmiComponent_before_mip(test_h5, model.inner, stats)
end
end
copy!(ExpertDualGmiComponent, Class1)
@pydef mutable struct Class2
function __init__(self; extractor, k = 3, strategy = "near")
self.data = _KnnDualGmiData(; extractor, k, strategy)
end
function fit(self, train_h5)
KnnDualGmiComponent_fit(self.data, train_h5)
end
function before_mip(self, test_h5, model, stats)
return @time KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
end
end
copy!(KnnDualGmiComponent, Class2)
end
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent

@ -9,6 +9,8 @@ function ProblemData(model::Model)::ProblemData
# Objective function
obj = objective_function(model)
obj_offset = obj.constant
obj_sense = objective_sense(model)
obj = [v keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
# Variable types, lower bounds and upper bounds
@ -86,8 +88,9 @@ function ProblemData(model::Model)::ProblemData
@assert length(constr_ub) == m
return ProblemData(
obj_offset = 0.0;
obj,
obj_offset,
obj_sense,
constr_lb,
constr_ub,
constr_lhs,
@ -102,6 +105,7 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
model = Model()
# Variables
obj_expr = AffExpr(data.obj_offset)
nvars = length(data.obj)
@variable(model, x[1:nvars])
for i = 1:nvars
@ -117,8 +121,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
if isfinite(data.var_ub[i])
set_upper_bound(x[i], data.var_ub[i])
end
set_objective_coefficient(model, x[i], data.obj[i])
add_to_expression!(obj_expr, x[i], data.obj[i])
end
@objective(model, data.obj_sense, obj_expr)
# Constraints
lhs = data.constr_lhs * x
@ -140,28 +145,44 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
end
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
constrs = build_constraints(model, cs)
for c in constrs
add_constraint(model, c)
end
return constrs
end
function set_warm_start(model::JuMP.Model, x::Vector{Float64})
vars = all_variables(model)
for (i, xi) in enumerate(x)
set_start_value(vars[i], xi)
end
end
function build_constraints(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, _ = size(cs.lhs)
constrs = []
for i = 1:nrows
# Build LHS expression
row = cs.lhs[i, :]
lhs_expr = AffExpr()
for (offset, val) in enumerate(row.nzval)
add_to_expression!(lhs_expr, vars[row.nzind[offset]], val)
end
# Build JuMP constraint
c = nothing
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars))
c = @build_constraint(cs.lb[i] <= lhs_expr)
elseif isinf(cs.lb[i])
c = @constraint(model, dot(cs.lhs[i, :], vars) <= cs.ub[i])
c = @build_constraint(lhs_expr <= cs.ub[i])
else
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
c = @build_constraint(cs.lb[i] <= lhs_expr <= cs.ub[i])
end
push!(constrs, c)
end
return constrs
end
function set_warm_start(model::JuMP.Model, x::Vector{Float64})
vars = all_variables(model)
for (i, xi) in enumerate(x)
set_start_value(vars[i], xi)
end
end
export to_model, ProblemData, add_constraint_set, set_warm_start
export to_model, ProblemData, add_constraint_set, set_warm_start, build_constraints

@ -0,0 +1,51 @@
@inline frac(x::Float64) = x - floor(x)
@inline frac2(x::Float64) = ceil(x) - x
function assert_leq(a, b; atol = 0.01)
if !all(a .<= b .+ atol)
delta = a .- b
for i in eachindex(delta)
if delta[i] > atol
@info "Assertion failed: a[$i] = $(a[i]) <= $(b[i]) = b[$i]"
end
end
error("assert_leq failed")
end
end
function assert_eq(a, b; atol = 1e-4)
if !all(abs.(a .- b) .<= atol)
delta = abs.(a .- b)
for i in eachindex(delta)
if delta[i] > atol
@info "Assertion failed: a[$i] = $(a[i]) == $(b[i]) = b[$i]"
end
end
error("assert_eq failed")
end
end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
throw(ErrorException("inequality fails to cut off fractional solution"))
end
end
end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
ub = cuts.ub[i]
lb = cuts.lb[i]
if (val >= ub) || (val <= lb)
throw(
ErrorException(
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
),
)
end
end
end

@ -7,6 +7,7 @@ using SparseArrays
Base.@kwdef mutable struct ProblemData
obj::Vector{Float64}
obj_offset::Float64
obj_sense::Any
constr_lb::Vector{Float64}
constr_ub::Vector{Float64}
constr_lhs::SparseMatrixCSC

@ -54,8 +54,8 @@ end
function compute_tableau(
data::ProblemData,
basis::Basis,
x::Vector{Float64};
basis::Basis;
x::Union{Nothing,Vector{Float64}} = nothing,
rows::Union{Vector{Int},Nothing} = nothing,
tol = 1e-8,
)::Tableau
@ -73,11 +73,12 @@ function compute_tableau(
factor = klu(sparse(lhs_b'))
end
@timeit "Compute tableau LHS" begin
tableau_lhs_I = Int[]
tableau_lhs_J = Int[]
tableau_lhs_V = Float64[]
for k = 1:length(rows)
@timeit "Compute tableau" begin
@timeit "Initialize" begin
tableau_rhs = zeros(length(rows))
tableau_lhs = zeros(length(rows), ncols)
end
for k in eachindex(1:length(rows))
@timeit "Prepare inputs" begin
i = rows[k]
e = zeros(nrows)
@ -87,25 +88,14 @@ function compute_tableau(
sol = factor \ e
end
@timeit "Multiply" begin
row = sol' * data.constr_lhs
end
@timeit "Sparsify & copy" begin
for (j, v) in enumerate(row)
if abs(v) < tol
continue
end
push!(tableau_lhs_I, k)
push!(tableau_lhs_J, j)
push!(tableau_lhs_V, v)
end
tableau_lhs[k, :] = sol' * data.constr_lhs
tableau_rhs[k] = sol' * data.constr_ub
end
end
tableau_lhs =
sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
end
@timeit "Compute tableau RHS" begin
tableau_rhs = [x[basis.var_basic]; zeros(length(basis.constr_basic))][rows]
@timeit "Sparsify" begin
tableau_lhs[abs.(tableau_lhs) .<= tol] .= 0
tableau_lhs = sparse(tableau_lhs)
end
end
@timeit "Compute tableau objective row" begin
@ -114,12 +104,13 @@ function compute_tableau(
tableau_obj[abs.(tableau_obj).<tol] .= 0
end
return Tableau(
obj = tableau_obj,
lhs = tableau_lhs,
rhs = tableau_rhs,
z = dot(data.obj, x),
)
# Compute z if solution is provided
z = 0
if x !== nothing
z = dot(data.obj, x)
end
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
end
export get_basis, get_x, compute_tableau

@ -6,12 +6,16 @@ module MIPLearn
using PyCall
using SparseArrays
using PrecompileTools: @setup_workload, @compile_workload
include("collectors.jl")
include("components.jl")
include("extractors.jl")
include("io.jl")
include("problems/setcover.jl")
include("problems/stab.jl")
include("problems/tsp.jl")
include("solvers/jump.jl")
include("solvers/learning.jl")
@ -21,6 +25,8 @@ function __init__()
__init_extractors__()
__init_io__()
__init_problems_setcover__()
__init_problems_stab__()
__init_problems_tsp__()
__init_solvers_jump__()
__init_solvers_learning__()
end
@ -28,4 +34,51 @@ end
include("BB/BB.jl")
include("Cuts/Cuts.jl")
# Precompilation
# =============================================================================
function __precompile_cuts__()
function build_model(mps_filename)
model = read_from_file(mps_filename)
set_optimizer(model, SCIP.Optimizer)
return JumpModel(model)
end
BASEDIR = dirname(@__FILE__)
mps_filename = "$BASEDIR/../test/fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../test/fixtures/bell5.h5"
collect_gmi_dual(
mps_filename;
optimizer=HiGHS.Optimizer,
max_rounds = 10,
max_cuts_per_round = 500,
)
knn = KnnDualGmiComponent(
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
k = 2,
)
knn.fit([h5_filename, h5_filename])
solver = LearningSolver(
components = [
ExpertPrimalComponent(action = SetWarmStart()),
knn,
],
skip_lp = true,
)
solver.optimize(mps_filename, build_model)
end
@setup_workload begin
using SCIP
using HiGHS
using MIPLearn.Cuts
using PrecompileTools: @setup_workload, @compile_workload
__init__()
Cuts.__init__()
@compile_workload begin
__precompile_cuts__()
end
end
end # module

@ -2,19 +2,21 @@
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
global MinProbabilityClassifier = PyNULL()
global SingleClassFix = PyNULL()
global PrimalComponentAction = PyNULL()
global SetWarmStart = PyNULL()
global FixVariables = PyNULL()
global EnforceProximity = PyNULL()
global ExpertPrimalComponent = PyNULL()
global FixVariables = PyNULL()
global IndependentVarsPrimalComponent = PyNULL()
global JointVarsPrimalComponent = PyNULL()
global SolutionConstructor = PyNULL()
global MemorizingCutsComponent = PyNULL()
global MemorizingLazyComponent = PyNULL()
global MemorizingPrimalComponent = PyNULL()
global SelectTopSolutions = PyNULL()
global MergeTopSolutions = PyNULL()
global MinProbabilityClassifier = PyNULL()
global PrimalComponentAction = PyNULL()
global SelectTopSolutions = PyNULL()
global SetWarmStart = PyNULL()
global SingleClassFix = PyNULL()
global SolutionConstructor = PyNULL()
function __init_components__()
copy!(
@ -51,6 +53,14 @@ function __init_components__()
)
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
copy!(
MemorizingCutsComponent,
pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent,
)
copy!(
MemorizingLazyComponent,
pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent,
)
end
export MinProbabilityClassifier,
@ -65,4 +75,6 @@ export MinProbabilityClassifier,
SolutionConstructor,
MemorizingPrimalComponent,
SelectTopSolutions,
MergeTopSolutions
MergeTopSolutions,
MemorizingCutsComponent,
MemorizingLazyComponent

@ -39,14 +39,14 @@ end
function PyObject(m::SparseMatrixCSC)
pyimport("scipy.sparse").csc_matrix(
(m.nzval, m.rowval .- 1, m.colptr .- 1),
shape=size(m),
shape = size(m),
).tocoo()
end
function write_jld2(
objs::Vector,
dirname::AbstractString;
prefix::AbstractString=""
prefix::AbstractString = "",
)::Vector{String}
mkpath(dirname)
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]

@ -13,12 +13,11 @@ function __init_problems_setcover__()
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
end
function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
if data isa String
data = read_pkl_gz(data)
end
model = Model(optimizer)
set_silent(model)
n_elements, n_sets = size(data.incidence_matrix)
E = 0:n_elements-1
S = 0:n_sets-1
@ -32,4 +31,4 @@ function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
return JumpModel(model)
end
export SetCoverData, SetCoverGenerator, build_setcover_model
export SetCoverData, SetCoverGenerator, build_setcover_model_jump

@ -0,0 +1,59 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
using HiGHS
global MaxWeightStableSetData = PyNULL()
global MaxWeightStableSetGenerator = PyNULL()
function __init_problems_stab__()
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
copy!(
MaxWeightStableSetGenerator,
pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator,
)
end
function build_stab_model_jump(data::Any; optimizer = HiGHS.Optimizer)
nx = pyimport("networkx")
if data isa String
data = read_pkl_gz(data)
end
model = Model(optimizer)
# Variables and objective function
nodes = data.graph.nodes
x = @variable(model, x[nodes], Bin)
@objective(model, Min, sum(-data.weights[i+1] * x[i] for i in nodes))
# Edge inequalities
for (i1, i2) in data.graph.edges
@constraint(model, x[i1] + x[i2] <= 1, base_name = "eq_edge[$i1,$i2]")
end
function cuts_separate(cb_data)
x_val = callback_value.(Ref(cb_data), x)
violations = []
for clique in nx.find_cliques(data.graph)
if sum(x_val[i] for i in clique) > 1.0001
push!(violations, sort(clique))
end
end
return violations
end
function cuts_enforce(violations)
@info "Adding $(length(violations)) clique cuts..."
for clique in violations
constr = @build_constraint(sum(x[i] for i in clique) <= 1)
submit(model, constr)
end
end
return JumpModel(model, cuts_separate = cuts_separate, cuts_enforce = cuts_enforce)
end
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump

@ -0,0 +1,71 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
global TravelingSalesmanData = PyNULL()
global TravelingSalesmanGenerator = PyNULL()
function __init_problems_tsp__()
copy!(TravelingSalesmanData, pyimport("miplearn.problems.tsp").TravelingSalesmanData)
copy!(
TravelingSalesmanGenerator,
pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator,
)
end
function build_tsp_model_jump(data::Any; optimizer)
nx = pyimport("networkx")
if data isa String
data = read_pkl_gz(data)
end
model = Model(optimizer)
edges = [(i, j) for i = 1:data.n_cities for j = (i+1):data.n_cities]
x = @variable(model, x[edges], Bin)
@objective(model, Min, sum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
# Eq: Must choose two edges adjacent to each node
@constraint(
model,
eq_degree[i in 1:data.n_cities],
sum(x[(min(i, j), max(i, j))] for j = 1:data.n_cities if i != j) == 2
)
function lazy_separate(cb_data)
x_val = callback_value.(Ref(cb_data), x)
violations = []
selected_edges = [e for e in edges if x_val[e] > 0.5]
graph = nx.Graph()
graph.add_edges_from(selected_edges)
for component in nx.connected_components(graph)
if length(component) < data.n_cities
cut_edges = [
[e[1], e[2]] for
e in edges if (e[1] component && e[2] component) ||
(e[1] component && e[2] component)
]
push!(violations, cut_edges)
end
end
return violations
end
function lazy_enforce(violations)
@info "Adding $(length(violations)) subtour elimination eqs..."
for violation in violations
constr = @build_constraint(sum(x[(e[1], e[2])] for e in violation) >= 2)
submit(model, constr)
end
end
return JumpModel(
model,
lazy_enforce = lazy_enforce,
lazy_separate = lazy_separate,
lp_optimizer = optimizer,
)
end
export TravelingSalesmanData, TravelingSalesmanGenerator, build_tsp_model_jump

@ -4,9 +4,31 @@
using JuMP
using HiGHS
using JSON
global JumpModel = PyNULL()
Base.@kwdef mutable struct _JumpModelExtData
aot_cuts = nothing
cb_data = nothing
cuts = []
lazy = []
where::Symbol = :WHERE_DEFAULT
cuts_enforce::Union{Function,Nothing} = nothing
cuts_separate::Union{Function,Nothing} = nothing
lazy_enforce::Union{Function,Nothing} = nothing
lazy_separate::Union{Function,Nothing} = nothing
lp_optimizer::Any
end
function JuMP.copy_extension_data(
old_ext::_JumpModelExtData,
new_model::AbstractModel,
::AbstractModel,
)
new_model.ext[:miplearn] = _JumpModelExtData(lp_optimizer = old_ext.lp_optimizer)
end
# -----------------------------------------------------------------------------
function _add_constrs(
@ -35,6 +57,17 @@ function _add_constrs(
end
end
function submit(model::JuMP.Model, constr)
ext = model.ext[:miplearn]
if ext.where == :WHERE_CUTS
MOI.submit(model, MOI.UserCut(ext.cb_data), constr)
elseif ext.where == :WHERE_LAZY
MOI.submit(model, MOI.LazyConstraint(ext.cb_data), constr)
else
add_constraint(model, constr)
end
end
function _extract_after_load(model::JuMP.Model, h5)
@info "_extract_after_load"
if JuMP.objective_sense(model) == MOI.MIN_SENSE
@ -110,6 +143,9 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
end
end
end
if isempty(names)
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
end
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
h5.put_sparse("static_constr_lhs", lhs)
h5.put_array("static_constr_rhs", rhs)
@ -252,6 +288,11 @@ function _extract_after_mip(model::JuMP.Model, h5)
rhs = h5.get_array("static_constr_rhs")
slacks = abs.(lhs * x - rhs)
h5.put_array("mip_constr_slacks", slacks)
# Cuts and lazy constraints
ext = model.ext[:miplearn]
h5.put_scalar("mip_cuts", JSON.json(ext.cuts))
h5.put_scalar("mip_lazy", JSON.json(ext.lazy))
end
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
@ -264,8 +305,53 @@ function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
end
function _optimize(model::JuMP.Model)
@info "_optimize"
# Set up cut callbacks
ext = model.ext[:miplearn]
ext.cuts = []
function cut_callback(cb_data)
ext.cb_data = cb_data
ext.where = :WHERE_CUTS
if ext.aot_cuts !== nothing
@info "Enforcing $(length(ext.aot_cuts)) cuts ahead-of-time..."
violations = ext.aot_cuts
ext.aot_cuts = nothing
else
violations = ext.cuts_separate(cb_data)
for v in violations
push!(ext.cuts, v)
end
end
if !isempty(violations)
ext.cuts_enforce(violations)
end
end
if ext.cuts_separate !== nothing
set_attribute(model, MOI.UserCutCallback(), cut_callback)
end
# Set up lazy constraint callbacks
ext.lazy = []
function lazy_callback(cb_data)
ext.cb_data = cb_data
ext.where = :WHERE_LAZY
violations = ext.lazy_separate(cb_data)
for v in violations
push!(ext.lazy, v)
end
if !isempty(violations)
ext.lazy_enforce(violations)
end
end
if ext.lazy_separate !== nothing
set_attribute(model, MOI.LazyConstraintCallback(), lazy_callback)
end
# Optimize
optimize!(model)
# Cleanup
ext.where = :WHERE_DEFAULT
ext.cb_data = nothing
flush(stdout)
Libc.flush_cstdio()
end
@ -273,9 +359,8 @@ end
function _relax(model::JuMP.Model)
relaxed, _ = copy_model(model)
relax_integrality(relaxed)
# FIXME: Remove hardcoded optimizer
set_optimizer(relaxed, HiGHS.Optimizer)
# set_silent(relaxed)
set_optimizer(relaxed, model.ext[:miplearn].lp_optimizer)
set_silent(relaxed)
return relaxed
end
@ -291,16 +376,39 @@ function _set_warm_starts(model::JuMP.Model, var_names, var_values, stats)
end
function _write(model::JuMP.Model, filename)
ext = model.ext[:miplearn]
if ext.lazy_separate !== nothing
set_attribute(model, MOI.LazyConstraintCallback(), nothing)
end
if ext.cuts_separate !== nothing
set_attribute(model, MOI.UserCutCallback(), nothing)
end
write_to_file(model, filename)
end
# -----------------------------------------------------------------------------
function __init_solvers_jump__()
@pydef mutable struct Class
AbstractModel = pyimport("miplearn.solvers.abstract").AbstractModel
@pydef mutable struct Class <: AbstractModel
function __init__(self, inner)
function __init__(
self,
inner;
cuts_enforce::Union{Function,Nothing} = nothing,
cuts_separate::Union{Function,Nothing} = nothing,
lazy_enforce::Union{Function,Nothing} = nothing,
lazy_separate::Union{Function,Nothing} = nothing,
lp_optimizer = HiGHS.Optimizer,
)
self.inner = inner
self.inner.ext[:miplearn] = _JumpModelExtData(
cuts_enforce = cuts_enforce,
cuts_separate = cuts_separate,
lazy_enforce = lazy_enforce,
lazy_separate = lazy_separate,
lp_optimizer = lp_optimizer,
)
end
add_constrs(
@ -336,6 +444,21 @@ function __init_solvers_jump__()
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
write(self, filename) = _write(self.inner, filename)
function set_cuts(self, cuts)
self.inner.ext[:miplearn].aot_cuts = cuts
end
function lazy_enforce(self, violations)
self.inner.ext[:miplearn].lazy_enforce(violations)
end
function _lazy_enforce_collected(self)
ext = self.inner.ext[:miplearn]
if ext.lazy_enforce !== nothing
ext.lazy_enforce(ext.lazy)
end
end
end
copy!(JumpModel, Class)
end

@ -7,6 +7,7 @@ version = "0.1.0"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
GLPK = "60bf3e95-4087-53dc-ae20-288a0d20c6a6"
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
@ -17,6 +18,8 @@ Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -89,11 +89,7 @@ function bb_run(optimizer_name, optimizer; large=true)
BB.ReliabilityBranching(aggregation=:min, collect=true),
]
h5 = H5File("$FIXTURES/$instance.h5")
mip_lower_bound = h5.get_scalar("mip_lower_bound")
mip_upper_bound = h5.get_scalar("mip_upper_bound")
mip_sense = h5.get_scalar("mip_sense")
mip_primal_bound =
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
mip_obj_bound = h5.get_scalar("mip_obj_bound")
h5.file.close()
mip = BB.init(optimizer)
@ -101,10 +97,10 @@ function bb_run(optimizer_name, optimizer; large=true)
@info optimizer_name, branch_rule, instance
@time BB.solve!(
mip,
initial_primal_bound=mip_primal_bound,
print_interval=1,
node_limit=25,
branch_rule=branch_rule,
initial_primal_bound = mip_obj_bound,
print_interval = 1,
node_limit = 25,
branch_rule = branch_rule,
)
end
end

@ -0,0 +1,23 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using HiGHS
function test_cuts_tableau_gmi()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
collect_gmi(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_lb = h5.get_array("cuts_lb")
cuts_ub = h5.get_array("cuts_ub")
cuts_lhs = h5.get_sparse("cuts_lhs")
n_cuts = length(cuts_lb)
@test n_cuts > 0
@test n_cuts == length(cuts_ub)
@test cuts_lhs.shape[1] == n_cuts
finally
h5.close()
end
end

@ -0,0 +1,70 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using SCIP
using HiGHS
using MIPLearn.Cuts
function test_cuts_tableau_gmi_dual_collect()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_basis_vars = h5.get_array("cuts_basis_vars")
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
cuts_rows = h5.get_array("cuts_rows")
@test size(cuts_basis_vars) == (15, 402)
@test size(cuts_basis_sizes) == (15, 4)
@test size(cuts_rows) == (15,)
finally
h5.close()
end
end
function test_cuts_tableau_gmi_dual_usage()
function build_model(mps_filename)
model = read_from_file(mps_filename)
set_optimizer(model, SCIP.Optimizer)
return JumpModel(model)
end
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
rm(h5_filename, force=true)
# Run basic collector
bc = BasicCollector(write_mps = false, skip_lp = true)
bc.collect([mps_filename], build_model)
# Run dual GMI collector
@info "Running dual GMI collector..."
collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
# # Test expert component
# solver = LearningSolver(
# components = [
# ExpertPrimalComponent(action = SetWarmStart()),
# ExpertDualGmiComponent(),
# ],
# skip_lp = true,
# )
# solver.optimize(mps_filename, build_model)
# Test kNN component
knn = KnnDualGmiComponent(
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
k = 2,
)
knn.fit([h5_filename, h5_filename])
solver = LearningSolver(
components = [
ExpertPrimalComponent(action = SetWarmStart()),
knn,
],
skip_lp = true,
)
solver.optimize(mps_filename, build_model)
return
end

@ -16,10 +16,16 @@ FIXTURES = "$BASEDIR/../fixtures"
include("fixtures.jl")
include("BB/test_bb.jl")
include("components/test_cuts.jl")
include("components/test_lazy.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("Cuts/tableau/test_gmi.jl")
include("Cuts/tableau/test_gmi_dual.jl")
include("problems/test_setcover.jl")
include("test_io.jl")
include("problems/test_stab.jl")
include("problems/test_tsp.jl")
include("solvers/test_jump.jl")
include("test_io.jl")
include("test_usage.jl")
function runtests()
@ -27,11 +33,14 @@ function runtests()
@testset "BB" begin
test_bb()
end
# test_cuts_blackbox_cplex()
test_io()
test_problems_setcover()
test_problems_stab()
test_problems_tsp()
test_solvers_jump()
test_usage()
test_cuts()
test_lazy()
end
end

@ -0,0 +1,41 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using SCIP
function gen_stab()
np = pyimport("numpy")
uniform = pyimport("scipy.stats").uniform
randint = pyimport("scipy.stats").randint
np.random.seed(42)
gen = MaxWeightStableSetGenerator(
w = uniform(10.0, scale = 1.0),
n = randint(low = 50, high = 51),
p = uniform(loc = 0.5, scale = 0.0),
fix_graph = true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
collector = BasicCollector()
collector.collect(
data_filenames,
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
progress = true,
verbose = true,
)
end
function test_cuts()
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
model, stats = solver.optimize(
data_filenames[1],
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
)
@test stats["Cuts: AOT"] > 0
end

@ -0,0 +1,44 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using GLPK
function gen_tsp()
np = pyimport("numpy")
uniform = pyimport("scipy.stats").uniform
randint = pyimport("scipy.stats").randint
np.random.seed(42)
gen = TravelingSalesmanGenerator(
x = uniform(loc = 0.0, scale = 1000.0),
y = uniform(loc = 0.0, scale = 1000.0),
n = randint(low = 20, high = 21),
gamma = uniform(loc = 1.0, scale = 0.25),
fix_cities = true,
round = true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
collector = BasicCollector()
collector.collect(
data_filenames,
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
progress = true,
verbose = true,
)
end
function test_lazy()
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
model, stats = solver.optimize(
data_filenames[1],
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
)
@test stats["Lazy Constraints: AOT"] > 0
end

@ -14,5 +14,5 @@ function fixture_setcover_data()
end
function fixture_setcover_model()
return build_setcover_model(fixture_setcover_data())
return build_setcover_model_jump(fixture_setcover_data())
end

@ -51,7 +51,7 @@ function test_problems_setcover_model()
)
h5 = H5File(tempname(), "w")
model = build_setcover_model(data)
model = build_setcover_model_jump(data)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)

@ -0,0 +1,22 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using PyCall
using SCIP
function test_problems_stab()
nx = pyimport("networkx")
data = MaxWeightStableSetData(
graph = nx.gnp_random_graph(25, 0.5, seed = 42),
weights = repeat([1.0], 25),
)
h5 = H5File(tempname(), "w")
model = build_stab_model_jump(data, optimizer = SCIP.Optimizer)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)
@test h5.get_scalar("mip_obj_value") == -6
@test h5.get_scalar("mip_cuts")[1:20] == "[[0,8,11,13],[0,8,13"
h5.close()
end

@ -0,0 +1,22 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using GLPK
using JuMP
function test_problems_tsp()
pdist = pyimport("scipy.spatial.distance").pdist
squareform = pyimport("scipy.spatial.distance").squareform
data = TravelingSalesmanData(
n_cities = 6,
distances = squareform(
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
),
)
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
model.optimize()
@test objective_value(model.inner) == 8.0
return
end

@ -4,6 +4,7 @@
using MIPLearn
using JLD2
using SparseArrays
struct _TestStruct
n::Int
@ -35,6 +36,8 @@ function test_h5()
_test_roundtrip_array(h5, [1, 2, 3])
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
_test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3]))
# _test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3], 4, 4))
@test h5.get_array("unknown-key") === nothing
h5.close()
end
@ -46,7 +49,7 @@ function test_jld2()
_TestStruct(2, [1.0, 2.0, 3.0]),
_TestStruct(3, [3.0, 3.0, 3.0]),
]
filenames = write_jld2(data, dirname, prefix="obj")
filenames = write_jld2(data, dirname, prefix = "obj")
@test all(
filenames .==
["$dirname/obj00001.jld2", "$dirname/obj00002.jld2", "$dirname/obj00003.jld2"],
@ -79,3 +82,11 @@ function _test_roundtrip_str_array(h5, original)
@test recovered !== nothing
@test all(original .== recovered)
end
function _test_roundtrip_sparse(h5, original)
h5.put_sparse("key", original)
recovered = MIPLearn.convert(SparseMatrixCSC, h5.get_sparse("key"))
@test recovered !== nothing
@test size(original) == size(recovered)
@test all(original .== recovered)
end

@ -29,13 +29,13 @@ function test_usage()
@debug "Collecting training data..."
bc = BasicCollector()
bc.collect(data_filenames, build_setcover_model)
bc.collect(data_filenames, build_setcover_model_jump)
@debug "Training models..."
solver.fit(data_filenames)
@debug "Solving model..."
solver.optimize(data_filenames[1], build_setcover_model)
solver.optimize(data_filenames[1], build_setcover_model_jump)
@debug "Checking solution..."
h5 = H5File(h5_filenames[1])

Loading…
Cancel
Save