mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 00:18:51 -06:00
Merge branch 'dev' into feature/replay
This commit is contained in:
@@ -1,7 +1,7 @@
|
|||||||
name = "MIPLearn"
|
name = "MIPLearn"
|
||||||
uuid = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
uuid = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
||||||
authors = ["Alinson S Xavier <git@axavier.org>"]
|
authors = ["Alinson S Xavier <git@axavier.org>"]
|
||||||
version = "0.3.0"
|
version = "0.4.0"
|
||||||
|
|
||||||
[deps]
|
[deps]
|
||||||
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
|
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
|
||||||
@@ -9,26 +9,29 @@ DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
|||||||
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
||||||
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
||||||
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
|
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
|
||||||
|
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||||
KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
|
KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
|
||||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||||
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
|
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
|
||||||
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||||
|
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
|
||||||
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
||||||
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
||||||
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
||||||
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
|
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
|
||||||
|
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
|
||||||
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||||
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||||
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||||
|
|
||||||
[compat]
|
[compat]
|
||||||
julia = "1"
|
|
||||||
Conda = "1"
|
Conda = "1"
|
||||||
DataStructures = "0.18"
|
DataStructures = "0.18"
|
||||||
HDF5 = "0.16"
|
HDF5 = "0.16"
|
||||||
HiGHS = "1"
|
HiGHS = "1"
|
||||||
JLD2 = "0.4"
|
JLD2 = "0.4"
|
||||||
|
JSON = "0.21"
|
||||||
JuMP = "1"
|
JuMP = "1"
|
||||||
KLU = "0.4"
|
KLU = "0.4"
|
||||||
MathOptInterface = "1"
|
MathOptInterface = "1"
|
||||||
@@ -37,3 +40,4 @@ PyCall="1"
|
|||||||
Requires = "1"
|
Requires = "1"
|
||||||
Statistics = "1"
|
Statistics = "1"
|
||||||
TimerOutputs = "0.5"
|
TimerOutputs = "0.5"
|
||||||
|
julia = "1"
|
||||||
|
|||||||
2
deps/build.jl
vendored
2
deps/build.jl
vendored
@@ -5,7 +5,7 @@ function install_miplearn()
|
|||||||
Conda.update()
|
Conda.update()
|
||||||
pip = joinpath(dirname(pyimport("sys").executable), "pip")
|
pip = joinpath(dirname(pyimport("sys").executable), "pip")
|
||||||
isfile(pip) || error("$pip: invalid path")
|
isfile(pip) || error("$pip: invalid path")
|
||||||
run(`$pip install miplearn==0.3.0`)
|
run(`$pip install miplearn==0.4.0`)
|
||||||
end
|
end
|
||||||
|
|
||||||
install_miplearn()
|
install_miplearn()
|
||||||
|
|||||||
@@ -4,15 +4,22 @@
|
|||||||
|
|
||||||
module Cuts
|
module Cuts
|
||||||
|
|
||||||
|
using PyCall
|
||||||
|
|
||||||
import ..to_str_array
|
import ..to_str_array
|
||||||
|
|
||||||
include("tableau/structs.jl")
|
include("tableau/structs.jl")
|
||||||
|
|
||||||
# include("blackbox/cplex.jl")
|
# include("blackbox/cplex.jl")
|
||||||
include("tableau/collect.jl")
|
include("tableau/numerics.jl")
|
||||||
include("tableau/gmi.jl")
|
include("tableau/gmi.jl")
|
||||||
|
include("tableau/gmi_dual.jl")
|
||||||
include("tableau/moi.jl")
|
include("tableau/moi.jl")
|
||||||
include("tableau/tableau.jl")
|
include("tableau/tableau.jl")
|
||||||
include("tableau/transform.jl")
|
include("tableau/transform.jl")
|
||||||
|
|
||||||
|
function __init__()
|
||||||
|
__init_gmi_dual__()
|
||||||
|
end
|
||||||
|
|
||||||
end # module
|
end # module
|
||||||
|
|||||||
@@ -1,184 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
import ..H5File
|
|
||||||
|
|
||||||
using OrderedCollections
|
|
||||||
|
|
||||||
function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_round = 100)
|
|
||||||
@info mps_filename
|
|
||||||
reset_timer!()
|
|
||||||
|
|
||||||
# Open HDF5 file
|
|
||||||
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
|
||||||
h5 = H5File(h5_filename)
|
|
||||||
|
|
||||||
# Read optimal solution
|
|
||||||
sol_opt_dict = Dict(
|
|
||||||
zip(
|
|
||||||
h5.get_array("static_var_names"),
|
|
||||||
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Read optimal value
|
|
||||||
obj_mip = h5.get_scalar("mip_lower_bound")
|
|
||||||
if obj_mip === nothing
|
|
||||||
obj_mip = h5.get_scalar("mip_obj_value")
|
|
||||||
end
|
|
||||||
obj_lp = nothing
|
|
||||||
h5.file.close()
|
|
||||||
|
|
||||||
# Define relative MIP gap
|
|
||||||
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
|
||||||
|
|
||||||
# Initialize stats
|
|
||||||
stats_obj = []
|
|
||||||
stats_gap = []
|
|
||||||
stats_ncuts = []
|
|
||||||
stats_time_convert = 0
|
|
||||||
stats_time_solve = 0
|
|
||||||
stats_time_select = 0
|
|
||||||
stats_time_tableau = 0
|
|
||||||
stats_time_gmi = 0
|
|
||||||
all_cuts = nothing
|
|
||||||
|
|
||||||
# Read problem
|
|
||||||
model = read_from_file(mps_filename)
|
|
||||||
|
|
||||||
for round = 1:max_rounds
|
|
||||||
@info "Round $(round)..."
|
|
||||||
|
|
||||||
stats_time_convert = @elapsed begin
|
|
||||||
# Extract problem data
|
|
||||||
data = ProblemData(model)
|
|
||||||
|
|
||||||
# Construct optimal solution vector (with correct variable sequence)
|
|
||||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
|
||||||
|
|
||||||
# Assert optimal solution is feasible for the original problem
|
|
||||||
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
|
|
||||||
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
|
|
||||||
|
|
||||||
# Convert to standard form
|
|
||||||
data_s, transforms = convert_to_standard_form(data)
|
|
||||||
model_s = to_model(data_s)
|
|
||||||
set_optimizer(model_s, optimizer)
|
|
||||||
relax_integrality(model_s)
|
|
||||||
|
|
||||||
# Convert optimal solution to standard form
|
|
||||||
sol_opt_s = forward(transforms, sol_opt)
|
|
||||||
|
|
||||||
# Assert converted solution is feasible for standard form problem
|
|
||||||
@assert data_s.constr_lhs * sol_opt_s ≈ data_s.constr_lb
|
|
||||||
end
|
|
||||||
|
|
||||||
# Optimize standard form
|
|
||||||
optimize!(model_s)
|
|
||||||
stats_time_solve += solve_time(model_s)
|
|
||||||
obj = objective_value(model_s) + data_s.obj_offset
|
|
||||||
if obj_lp === nothing
|
|
||||||
obj_lp = obj
|
|
||||||
push!(stats_obj, obj)
|
|
||||||
push!(stats_gap, gap(obj))
|
|
||||||
push!(stats_ncuts, 0)
|
|
||||||
end
|
|
||||||
if termination_status(model_s) != MOI.OPTIMAL
|
|
||||||
return
|
|
||||||
end
|
|
||||||
|
|
||||||
# Select tableau rows
|
|
||||||
basis = get_basis(model_s)
|
|
||||||
sol_frac = get_x(model_s)
|
|
||||||
stats_time_select += @elapsed begin
|
|
||||||
selected_rows =
|
|
||||||
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
|
||||||
end
|
|
||||||
|
|
||||||
# Compute selected tableau rows
|
|
||||||
stats_time_tableau += @elapsed begin
|
|
||||||
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
|
|
||||||
|
|
||||||
# Assert tableau rows have been computed correctly
|
|
||||||
@assert tableau.lhs * sol_frac ≈ tableau.rhs
|
|
||||||
@assert tableau.lhs * sol_opt_s ≈ tableau.rhs
|
|
||||||
end
|
|
||||||
|
|
||||||
# Compute GMI cuts
|
|
||||||
stats_time_gmi += @elapsed begin
|
|
||||||
cuts_s = compute_gmi(data_s, tableau)
|
|
||||||
|
|
||||||
# Assert cuts have been generated correctly
|
|
||||||
try
|
|
||||||
assert_cuts_off(cuts_s, sol_frac)
|
|
||||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
|
||||||
catch
|
|
||||||
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
|
|
||||||
break
|
|
||||||
end
|
|
||||||
|
|
||||||
# Abort if no cuts are left
|
|
||||||
if length(cuts_s.lb) == 0
|
|
||||||
@info "No cuts generated. Aborting."
|
|
||||||
break
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
# Add GMI cuts to original problem
|
|
||||||
cuts = backwards(transforms, cuts_s)
|
|
||||||
assert_does_not_cut_off(cuts, sol_opt)
|
|
||||||
constrs = add_constraint_set(model, cuts)
|
|
||||||
|
|
||||||
# Optimize original form
|
|
||||||
set_optimizer(model, optimizer)
|
|
||||||
undo_relax = relax_integrality(model)
|
|
||||||
optimize!(model)
|
|
||||||
obj = objective_value(model)
|
|
||||||
push!(stats_obj, obj)
|
|
||||||
push!(stats_gap, gap(obj))
|
|
||||||
|
|
||||||
# Store useful cuts; drop useless ones from the problem
|
|
||||||
useful = [abs(shadow_price(c)) > 1e-3 for c in constrs]
|
|
||||||
drop = findall(useful .== false)
|
|
||||||
keep = findall(useful .== true)
|
|
||||||
delete.(model, constrs[drop])
|
|
||||||
if all_cuts === nothing
|
|
||||||
all_cuts = cuts
|
|
||||||
else
|
|
||||||
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
|
|
||||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
|
||||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
|
||||||
end
|
|
||||||
push!(stats_ncuts, length(all_cuts.lb))
|
|
||||||
|
|
||||||
undo_relax()
|
|
||||||
end
|
|
||||||
|
|
||||||
# Store cuts
|
|
||||||
if all_cuts !== nothing
|
|
||||||
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
|
||||||
h5 = H5File(h5_filename)
|
|
||||||
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
|
||||||
h5.put_array("cuts_lb", all_cuts.lb)
|
|
||||||
h5.put_array("cuts_ub", all_cuts.ub)
|
|
||||||
h5.file.close()
|
|
||||||
end
|
|
||||||
|
|
||||||
return OrderedDict(
|
|
||||||
"instance" => mps_filename,
|
|
||||||
"max_rounds" => max_rounds,
|
|
||||||
"rounds" => length(stats_obj) - 1,
|
|
||||||
"time_convert" => stats_time_convert,
|
|
||||||
"time_solve" => stats_time_solve,
|
|
||||||
"time_tableau" => stats_time_tableau,
|
|
||||||
"time_gmi" => stats_time_gmi,
|
|
||||||
"obj_mip" => obj_mip,
|
|
||||||
"obj_lp" => obj_lp,
|
|
||||||
"stats_obj" => stats_obj,
|
|
||||||
"stats_gap" => stats_gap,
|
|
||||||
"stats_ncuts" => stats_ncuts,
|
|
||||||
)
|
|
||||||
end
|
|
||||||
|
|
||||||
export collect_gmi
|
|
||||||
@@ -2,16 +2,196 @@
|
|||||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import ..H5File
|
||||||
|
|
||||||
|
using OrderedCollections
|
||||||
using SparseArrays
|
using SparseArrays
|
||||||
|
using Statistics
|
||||||
using TimerOutputs
|
using TimerOutputs
|
||||||
|
|
||||||
@inline frac(x::Float64) = x - floor(x)
|
function collect_gmi(
|
||||||
|
mps_filename;
|
||||||
|
optimizer,
|
||||||
|
max_rounds = 10,
|
||||||
|
max_cuts_per_round = 100,
|
||||||
|
atol = 1e-4,
|
||||||
|
)
|
||||||
|
reset_timer!()
|
||||||
|
|
||||||
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
# Open HDF5 file
|
||||||
|
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||||
|
h5 = H5File(h5_filename)
|
||||||
|
|
||||||
|
# Read optimal solution
|
||||||
|
sol_opt_dict = Dict(
|
||||||
|
zip(
|
||||||
|
h5.get_array("static_var_names"),
|
||||||
|
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Read optimal value
|
||||||
|
obj_mip = h5.get_scalar("mip_lower_bound")
|
||||||
|
if obj_mip === nothing
|
||||||
|
obj_mip = h5.get_scalar("mip_obj_value")
|
||||||
|
end
|
||||||
|
obj_lp = h5.get_scalar("lp_obj_value")
|
||||||
|
h5.file.close()
|
||||||
|
|
||||||
|
# Define relative MIP gap
|
||||||
|
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
||||||
|
|
||||||
|
# Initialize stats
|
||||||
|
stats_obj = []
|
||||||
|
stats_gap = []
|
||||||
|
stats_ncuts = []
|
||||||
|
stats_time_convert = 0
|
||||||
|
stats_time_solve = 0
|
||||||
|
stats_time_select = 0
|
||||||
|
stats_time_tableau = 0
|
||||||
|
stats_time_gmi = 0
|
||||||
|
all_cuts = nothing
|
||||||
|
|
||||||
|
# Read problem
|
||||||
|
model = read_from_file(mps_filename)
|
||||||
|
|
||||||
|
for round = 1:max_rounds
|
||||||
|
@info "Round $(round)..."
|
||||||
|
|
||||||
|
stats_time_convert = @elapsed begin
|
||||||
|
# Extract problem data
|
||||||
|
data = ProblemData(model)
|
||||||
|
|
||||||
|
# Construct optimal solution vector (with correct variable sequence)
|
||||||
|
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||||
|
|
||||||
|
# Assert optimal solution is feasible for the original problem
|
||||||
|
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||||
|
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||||
|
|
||||||
|
# Convert to standard form
|
||||||
|
data_s, transforms = convert_to_standard_form(data)
|
||||||
|
model_s = to_model(data_s)
|
||||||
|
set_optimizer(model_s, optimizer)
|
||||||
|
relax_integrality(model_s)
|
||||||
|
|
||||||
|
# Convert optimal solution to standard form
|
||||||
|
sol_opt_s = forward(transforms, sol_opt)
|
||||||
|
|
||||||
|
# Assert converted solution is feasible for standard form problem
|
||||||
|
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Optimize standard form
|
||||||
|
optimize!(model_s)
|
||||||
|
stats_time_solve += solve_time(model_s)
|
||||||
|
obj = objective_value(model_s)
|
||||||
|
|
||||||
|
if round == 1
|
||||||
|
# Assert standard form problem has same value as original
|
||||||
|
assert_eq(obj, obj_lp)
|
||||||
|
push!(stats_obj, obj)
|
||||||
|
push!(stats_gap, gap(obj))
|
||||||
|
push!(stats_ncuts, 0)
|
||||||
|
end
|
||||||
|
if termination_status(model_s) != MOI.OPTIMAL
|
||||||
|
return
|
||||||
|
end
|
||||||
|
|
||||||
|
# Select tableau rows
|
||||||
|
basis = get_basis(model_s)
|
||||||
|
sol_frac = get_x(model_s)
|
||||||
|
stats_time_select += @elapsed begin
|
||||||
|
selected_rows =
|
||||||
|
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Compute selected tableau rows
|
||||||
|
stats_time_tableau += @elapsed begin
|
||||||
|
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
|
||||||
|
|
||||||
|
# Assert tableau rows have been computed correctly
|
||||||
|
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
|
||||||
|
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Compute GMI cuts
|
||||||
|
stats_time_gmi += @elapsed begin
|
||||||
|
cuts_s = compute_gmi(data_s, tableau)
|
||||||
|
|
||||||
|
# Assert cuts have been generated correctly
|
||||||
|
assert_cuts_off(cuts_s, sol_frac)
|
||||||
|
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||||
|
|
||||||
|
# Abort if no cuts are left
|
||||||
|
if length(cuts_s.lb) == 0
|
||||||
|
@info "No cuts generated. Stopping."
|
||||||
|
break
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# Add GMI cuts to original problem
|
||||||
|
cuts = backwards(transforms, cuts_s)
|
||||||
|
assert_does_not_cut_off(cuts, sol_opt)
|
||||||
|
constrs = add_constraint_set(model, cuts)
|
||||||
|
|
||||||
|
# Optimize original form
|
||||||
|
set_optimizer(model, optimizer)
|
||||||
|
undo_relax = relax_integrality(model)
|
||||||
|
optimize!(model)
|
||||||
|
obj = objective_value(model)
|
||||||
|
push!(stats_obj, obj)
|
||||||
|
push!(stats_gap, gap(obj))
|
||||||
|
|
||||||
|
# Store useful cuts; drop useless ones from the problem
|
||||||
|
useful = [abs(shadow_price(c)) > atol for c in constrs]
|
||||||
|
drop = findall(useful .== false)
|
||||||
|
keep = findall(useful .== true)
|
||||||
|
delete.(model, constrs[drop])
|
||||||
|
if all_cuts === nothing
|
||||||
|
all_cuts = cuts
|
||||||
|
else
|
||||||
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
|
||||||
|
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
||||||
|
all_cuts.ub = [all_cuts.ub; cuts.ub[keep]]
|
||||||
|
end
|
||||||
|
push!(stats_ncuts, length(all_cuts.lb))
|
||||||
|
|
||||||
|
undo_relax()
|
||||||
|
end
|
||||||
|
|
||||||
|
# Store cuts
|
||||||
|
if all_cuts !== nothing
|
||||||
|
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||||
|
h5 = H5File(h5_filename)
|
||||||
|
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||||
|
h5.put_array("cuts_lb", all_cuts.lb)
|
||||||
|
h5.put_array("cuts_ub", all_cuts.ub)
|
||||||
|
h5.file.close()
|
||||||
|
end
|
||||||
|
|
||||||
|
return OrderedDict(
|
||||||
|
"instance" => mps_filename,
|
||||||
|
"max_rounds" => max_rounds,
|
||||||
|
"rounds" => length(stats_obj) - 1,
|
||||||
|
"time_convert" => stats_time_convert,
|
||||||
|
"time_solve" => stats_time_solve,
|
||||||
|
"time_tableau" => stats_time_tableau,
|
||||||
|
"time_gmi" => stats_time_gmi,
|
||||||
|
"obj_mip" => obj_mip,
|
||||||
|
"stats_obj" => stats_obj,
|
||||||
|
"stats_gap" => stats_gap,
|
||||||
|
"stats_ncuts" => stats_ncuts,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4)
|
||||||
candidate_rows = [
|
candidate_rows = [
|
||||||
r for
|
r for r = 1:length(basis.var_basic) if (
|
||||||
r = 1:length(basis.var_basic) if (data.var_types[basis.var_basic[r]] != 'C') &&
|
(data.var_types[basis.var_basic[r]] != 'C') &&
|
||||||
(frac(x[basis.var_basic[r]]) > atol)
|
(frac(x[basis.var_basic[r]]) > atol) &&
|
||||||
|
(frac2(x[basis.var_basic[r]]) > atol)
|
||||||
|
)
|
||||||
]
|
]
|
||||||
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
|
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
|
||||||
score = abs.(candidate_vals .- 0.5)
|
score = abs.(candidate_vals .- 0.5)
|
||||||
@@ -19,10 +199,10 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
|||||||
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
|
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
|
||||||
end
|
end
|
||||||
|
|
||||||
function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::ConstraintSet
|
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
|
||||||
nrows, ncols = size(tableau.lhs)
|
nrows, ncols = size(tableau.lhs)
|
||||||
ub = Float64[Inf for _ = 1:nrows]
|
ub = Float64[Inf for _ = 1:nrows]
|
||||||
lb = Float64[0.999 for _ = 1:nrows]
|
lb = Float64[0.9999 for _ = 1:nrows]
|
||||||
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
|
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
|
||||||
lhs_I = Int[]
|
lhs_I = Int[]
|
||||||
lhs_J = Int[]
|
lhs_J = Int[]
|
||||||
@@ -30,23 +210,25 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
|
|||||||
@timeit "Compute coefficients" begin
|
@timeit "Compute coefficients" begin
|
||||||
for k = 1:nnz(tableau.lhs)
|
for k = 1:nnz(tableau.lhs)
|
||||||
i::Int = tableau_I[k]
|
i::Int = tableau_I[k]
|
||||||
|
j::Int = tableau_J[k]
|
||||||
v::Float64 = 0.0
|
v::Float64 = 0.0
|
||||||
alpha_j = frac(tableau_V[k])
|
frac_alpha_j = frac(tableau_V[k])
|
||||||
|
alpha_j = tableau_V[k]
|
||||||
beta = frac(tableau.rhs[i])
|
beta = frac(tableau.rhs[i])
|
||||||
if data.var_types[i] == "C"
|
if data.var_types[j] == 'C'
|
||||||
if alpha_j >= 0
|
if alpha_j >= 0
|
||||||
v = alpha_j / beta
|
v = alpha_j / beta
|
||||||
else
|
else
|
||||||
v = alpha_j / (1 - beta)
|
v = -alpha_j / (1 - beta)
|
||||||
end
|
end
|
||||||
else
|
else
|
||||||
if alpha_j <= beta
|
if frac_alpha_j < beta
|
||||||
v = alpha_j / beta
|
v = frac_alpha_j / beta
|
||||||
else
|
else
|
||||||
v = (1 - alpha_j) / (1 - beta)
|
v = (1 - frac_alpha_j) / (1 - beta)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
if abs(v) > tol
|
if abs(v) > 1e-8
|
||||||
push!(lhs_I, i)
|
push!(lhs_I, i)
|
||||||
push!(lhs_J, tableau_J[k])
|
push!(lhs_J, tableau_J[k])
|
||||||
push!(lhs_V, v)
|
push!(lhs_V, v)
|
||||||
@@ -57,28 +239,5 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
|
|||||||
return ConstraintSet(; lhs, ub, lb)
|
return ConstraintSet(; lhs, ub, lb)
|
||||||
end
|
end
|
||||||
|
|
||||||
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
|
export compute_gmi,
|
||||||
for i = 1:length(cuts.lb)
|
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi
|
||||||
val = cuts.lhs[i, :]' * x
|
|
||||||
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
|
|
||||||
throw(ErrorException("inequality fails to cut off fractional solution"))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
|
|
||||||
for i = 1:length(cuts.lb)
|
|
||||||
val = cuts.lhs[i, :]' * x
|
|
||||||
ub = cuts.ub[i]
|
|
||||||
lb = cuts.lb[i]
|
|
||||||
if (val >= ub) || (val <= lb)
|
|
||||||
throw(
|
|
||||||
ErrorException(
|
|
||||||
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
|
|
||||||
),
|
|
||||||
)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off
|
|
||||||
|
|||||||
625
src/Cuts/tableau/gmi_dual.jl
Normal file
625
src/Cuts/tableau/gmi_dual.jl
Normal file
@@ -0,0 +1,625 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using Printf
|
||||||
|
using JuMP
|
||||||
|
using HiGHS
|
||||||
|
using Random
|
||||||
|
using DataStructures
|
||||||
|
|
||||||
|
global ExpertDualGmiComponent = PyNULL()
|
||||||
|
global KnnDualGmiComponent = PyNULL()
|
||||||
|
|
||||||
|
Base.@kwdef mutable struct _KnnDualGmiData
|
||||||
|
k = nothing
|
||||||
|
extractor = nothing
|
||||||
|
train_h5 = nothing
|
||||||
|
model = nothing
|
||||||
|
strategy = nothing
|
||||||
|
end
|
||||||
|
|
||||||
|
function collect_gmi_dual(
|
||||||
|
mps_filename;
|
||||||
|
optimizer,
|
||||||
|
max_rounds = 10,
|
||||||
|
max_cuts_per_round = 500,
|
||||||
|
)
|
||||||
|
reset_timer!()
|
||||||
|
|
||||||
|
@timeit "Read H5" begin
|
||||||
|
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||||
|
h5 = H5File(h5_filename, "r")
|
||||||
|
sol_opt_dict = Dict(
|
||||||
|
zip(
|
||||||
|
h5.get_array("static_var_names"),
|
||||||
|
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
obj_mip = h5.get_scalar("mip_obj_value")
|
||||||
|
h5.file.close()
|
||||||
|
end
|
||||||
|
|
||||||
|
# Define relative MIP gap
|
||||||
|
gap(v) = 100 * abs(obj_mip - v) / abs(obj_mip)
|
||||||
|
|
||||||
|
@timeit "Initialize" begin
|
||||||
|
stats_obj = []
|
||||||
|
stats_gap = []
|
||||||
|
stats_ncuts = []
|
||||||
|
original_basis = nothing
|
||||||
|
all_cuts = nothing
|
||||||
|
all_cuts_bases = nothing
|
||||||
|
all_cuts_rows = nothing
|
||||||
|
last_round_obj = nothing
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Read problem" begin
|
||||||
|
model = read_from_file(mps_filename)
|
||||||
|
set_optimizer(model, optimizer)
|
||||||
|
obj_original = objective_function(model)
|
||||||
|
end
|
||||||
|
|
||||||
|
for round = 1:max_rounds
|
||||||
|
@info "Round $(round)..."
|
||||||
|
|
||||||
|
@timeit "Convert model to standard form" begin
|
||||||
|
# Extract problem data
|
||||||
|
data = ProblemData(model)
|
||||||
|
|
||||||
|
# Construct optimal solution vector (with correct variable sequence)
|
||||||
|
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||||
|
|
||||||
|
# Assert optimal solution is feasible for the original problem
|
||||||
|
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||||
|
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||||
|
|
||||||
|
# Convert to standard form
|
||||||
|
data_s, transforms = convert_to_standard_form(data)
|
||||||
|
model_s = to_model(data_s)
|
||||||
|
set_optimizer(model_s, optimizer)
|
||||||
|
relax_integrality(model_s)
|
||||||
|
|
||||||
|
# Convert optimal solution to standard form
|
||||||
|
sol_opt_s = forward(transforms, sol_opt)
|
||||||
|
|
||||||
|
# Assert converted solution is feasible for standard form problem
|
||||||
|
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Optimize standard model" begin
|
||||||
|
@info "Optimizing standard model..."
|
||||||
|
optimize!(model_s)
|
||||||
|
obj = objective_value(model_s)
|
||||||
|
if round == 1
|
||||||
|
push!(stats_obj, obj)
|
||||||
|
push!(stats_gap, gap(obj))
|
||||||
|
push!(stats_ncuts, 0)
|
||||||
|
else
|
||||||
|
if obj ≈ last_round_obj
|
||||||
|
@info ("No improvement in obj value. Aborting.")
|
||||||
|
break
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if termination_status(model_s) != MOI.OPTIMAL
|
||||||
|
error("Non-optimal termination status")
|
||||||
|
end
|
||||||
|
last_round_obj = obj
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Select tableau rows" begin
|
||||||
|
basis = get_basis(model_s)
|
||||||
|
if round == 1
|
||||||
|
original_basis = basis
|
||||||
|
end
|
||||||
|
sol_frac = get_x(model_s)
|
||||||
|
selected_rows =
|
||||||
|
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Compute tableau rows" begin
|
||||||
|
tableau = compute_tableau(data_s, basis, x = sol_frac, rows = selected_rows)
|
||||||
|
|
||||||
|
# Assert tableau rows have been computed correctly
|
||||||
|
assert_eq(tableau.lhs * sol_frac, tableau.rhs, atol=1e-3)
|
||||||
|
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs, atol=1e-3)
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Compute GMI cuts" begin
|
||||||
|
cuts_s = compute_gmi(data_s, tableau)
|
||||||
|
|
||||||
|
# Assert cuts have been generated correctly
|
||||||
|
assert_cuts_off(cuts_s, sol_frac)
|
||||||
|
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||||
|
|
||||||
|
# Abort if no cuts are left
|
||||||
|
if length(cuts_s.lb) == 0
|
||||||
|
@info "No cuts generated. Aborting."
|
||||||
|
break
|
||||||
|
else
|
||||||
|
@info "Generated $(length(cuts_s.lb)) cuts"
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Add GMI cuts to original model" begin
|
||||||
|
@timeit "Convert to original form" begin
|
||||||
|
cuts = backwards(transforms, cuts_s)
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Prepare bv" begin
|
||||||
|
bv = repeat([basis], length(selected_rows))
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Append matrices" begin
|
||||||
|
if round == 1
|
||||||
|
all_cuts = cuts
|
||||||
|
all_cuts_bases = bv
|
||||||
|
all_cuts_rows = selected_rows
|
||||||
|
else
|
||||||
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
|
||||||
|
all_cuts.lb = [all_cuts.lb; cuts.lb]
|
||||||
|
all_cuts.ub = [all_cuts.ub; cuts.ub]
|
||||||
|
all_cuts_bases = [all_cuts_bases; bv]
|
||||||
|
all_cuts_rows = [all_cuts_rows; selected_rows]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Add to model" begin
|
||||||
|
@info "Adding $(length(all_cuts.lb)) constraints to original model"
|
||||||
|
constrs, gmi_exps = add_constraint_set_dual_v2(model, all_cuts)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Optimize original model" begin
|
||||||
|
set_objective_function(model, obj_original)
|
||||||
|
undo_relax = relax_integrality(model)
|
||||||
|
@info "Optimizing original model (constr)..."
|
||||||
|
optimize!(model)
|
||||||
|
obj = objective_value(model)
|
||||||
|
push!(stats_obj, obj)
|
||||||
|
push!(stats_gap, gap(obj))
|
||||||
|
sp = [shadow_price(c) for c in constrs]
|
||||||
|
undo_relax()
|
||||||
|
useful = [abs(sp[i]) > 1e-6 for (i, _) in enumerate(constrs)]
|
||||||
|
keep = findall(useful .== true)
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Filter out useless cuts" begin
|
||||||
|
@info "Keeping $(length(keep)) useful cuts"
|
||||||
|
all_cuts.lhs = all_cuts.lhs[keep, :]
|
||||||
|
all_cuts.lb = all_cuts.lb[keep]
|
||||||
|
all_cuts.ub = all_cuts.ub[keep]
|
||||||
|
all_cuts_bases = all_cuts_bases[keep, :]
|
||||||
|
all_cuts_rows = all_cuts_rows[keep, :]
|
||||||
|
push!(stats_ncuts, length(all_cuts_rows))
|
||||||
|
if isempty(keep)
|
||||||
|
break
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Update obj function of original model" begin
|
||||||
|
delete.(model, constrs)
|
||||||
|
set_objective_function(
|
||||||
|
model,
|
||||||
|
obj_original -
|
||||||
|
sum(sp[i] * gmi_exps[i] for (i, c) in enumerate(constrs) if useful[i]),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Store cuts in H5 file" begin
|
||||||
|
if all_cuts !== nothing
|
||||||
|
ncuts = length(all_cuts_rows)
|
||||||
|
total =
|
||||||
|
length(original_basis.var_basic) +
|
||||||
|
length(original_basis.var_nonbasic) +
|
||||||
|
length(original_basis.constr_basic) +
|
||||||
|
length(original_basis.constr_nonbasic)
|
||||||
|
all_cuts_basis_sizes = Array{Int64,2}(undef, ncuts, 4)
|
||||||
|
all_cuts_basis_vars = Array{Int64,2}(undef, ncuts, total)
|
||||||
|
for i = 1:ncuts
|
||||||
|
vb = all_cuts_bases[i].var_basic
|
||||||
|
vn = all_cuts_bases[i].var_nonbasic
|
||||||
|
cb = all_cuts_bases[i].constr_basic
|
||||||
|
cn = all_cuts_bases[i].constr_nonbasic
|
||||||
|
all_cuts_basis_sizes[i, :] = [length(vb) length(vn) length(cb) length(cn)]
|
||||||
|
all_cuts_basis_vars[i, :] = [vb' vn' cb' cn']
|
||||||
|
end
|
||||||
|
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||||
|
h5 = H5File(h5_filename)
|
||||||
|
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||||
|
h5.put_array("cuts_lb", all_cuts.lb)
|
||||||
|
h5.put_array("cuts_ub", all_cuts.ub)
|
||||||
|
h5.put_array("cuts_basis_vars", all_cuts_basis_vars)
|
||||||
|
h5.put_array("cuts_basis_sizes", all_cuts_basis_sizes)
|
||||||
|
h5.put_array("cuts_rows", all_cuts_rows)
|
||||||
|
h5.file.close()
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
to = TimerOutputs.get_defaulttimer()
|
||||||
|
stats_time = TimerOutputs.tottime(to) / 1e9
|
||||||
|
print_timer()
|
||||||
|
|
||||||
|
return OrderedDict(
|
||||||
|
"instance" => mps_filename,
|
||||||
|
"max_rounds" => max_rounds,
|
||||||
|
"rounds" => length(stats_obj) - 1,
|
||||||
|
"obj_mip" => obj_mip,
|
||||||
|
"stats_obj" => stats_obj,
|
||||||
|
"stats_gap" => stats_gap,
|
||||||
|
"stats_ncuts" => stats_ncuts,
|
||||||
|
"stats_time" => stats_time,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function ExpertDualGmiComponent_before_mip(test_h5, model, _)
|
||||||
|
# Read cuts and optimal solution
|
||||||
|
h5 = H5File(test_h5, "r")
|
||||||
|
sol_opt_dict = Dict(
|
||||||
|
zip(
|
||||||
|
h5.get_array("static_var_names"),
|
||||||
|
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
cut_basis_vars = h5.get_array("cuts_basis_vars")
|
||||||
|
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
||||||
|
cut_rows = h5.get_array("cuts_rows")
|
||||||
|
obj_mip = h5.get_scalar("mip_lower_bound")
|
||||||
|
if obj_mip === nothing
|
||||||
|
obj_mip = h5.get_scalar("mip_obj_value")
|
||||||
|
end
|
||||||
|
h5.close()
|
||||||
|
|
||||||
|
# Initialize stats
|
||||||
|
stats_time_convert = 0
|
||||||
|
stats_time_tableau = 0
|
||||||
|
stats_time_gmi = 0
|
||||||
|
all_cuts = nothing
|
||||||
|
|
||||||
|
stats_time_convert = @elapsed begin
|
||||||
|
# Extract problem data
|
||||||
|
data = ProblemData(model)
|
||||||
|
|
||||||
|
# Construct optimal solution vector (with correct variable sequence)
|
||||||
|
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||||
|
|
||||||
|
# Assert optimal solution is feasible for the original problem
|
||||||
|
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||||
|
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||||
|
|
||||||
|
# Convert to standard form
|
||||||
|
data_s, transforms = convert_to_standard_form(data)
|
||||||
|
model_s = to_model(data_s)
|
||||||
|
set_optimizer(model_s, HiGHS.Optimizer)
|
||||||
|
relax_integrality(model_s)
|
||||||
|
|
||||||
|
# Convert optimal solution to standard form
|
||||||
|
sol_opt_s = forward(transforms, sol_opt)
|
||||||
|
|
||||||
|
# Assert converted solution is feasible for standard form problem
|
||||||
|
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
current_basis = nothing
|
||||||
|
for (r, row) in enumerate(cut_rows)
|
||||||
|
stats_time_tableau += @elapsed begin
|
||||||
|
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
|
||||||
|
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
|
||||||
|
current_basis = Basis(;
|
||||||
|
var_basic = cut_basis_vars[r, 1:vbb],
|
||||||
|
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
|
||||||
|
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
|
||||||
|
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
||||||
|
)
|
||||||
|
end
|
||||||
|
tableau = compute_tableau(data_s, current_basis, rows = [row])
|
||||||
|
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
||||||
|
end
|
||||||
|
stats_time_gmi += @elapsed begin
|
||||||
|
cuts_s = compute_gmi(data_s, tableau)
|
||||||
|
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||||
|
end
|
||||||
|
cuts = backwards(transforms, cuts_s)
|
||||||
|
assert_does_not_cut_off(cuts, sol_opt)
|
||||||
|
|
||||||
|
if all_cuts === nothing
|
||||||
|
all_cuts = cuts
|
||||||
|
else
|
||||||
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
|
||||||
|
all_cuts.lb = [all_cuts.lb; cuts.lb]
|
||||||
|
all_cuts.ub = [all_cuts.ub; cuts.ub]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# Strategy 1: Add all cuts during the first call
|
||||||
|
function cut_callback_1(cb_data)
|
||||||
|
if all_cuts !== nothing
|
||||||
|
constrs = build_constraints(model, all_cuts)
|
||||||
|
@info "Enforcing $(length(constrs)) cuts..."
|
||||||
|
for c in constrs
|
||||||
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
||||||
|
end
|
||||||
|
all_cuts = nothing
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# Strategy 2: Add violated cuts repeatedly until unable to separate
|
||||||
|
callback_disabled = false
|
||||||
|
function cut_callback_2(cb_data)
|
||||||
|
if callback_disabled
|
||||||
|
return
|
||||||
|
end
|
||||||
|
x = all_variables(model)
|
||||||
|
x_val = callback_value.(cb_data, x)
|
||||||
|
lhs_val = all_cuts.lhs * x_val
|
||||||
|
is_violated = lhs_val .> all_cuts.ub
|
||||||
|
selected_idx = findall(is_violated .== true)
|
||||||
|
selected_cuts = ConstraintSet(
|
||||||
|
lhs=all_cuts.lhs[selected_idx, :],
|
||||||
|
ub=all_cuts.ub[selected_idx],
|
||||||
|
lb=all_cuts.lb[selected_idx],
|
||||||
|
)
|
||||||
|
constrs = build_constraints(model, selected_cuts)
|
||||||
|
if length(constrs) > 0
|
||||||
|
@info "Enforcing $(length(constrs)) cuts..."
|
||||||
|
for c in constrs
|
||||||
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
||||||
|
end
|
||||||
|
else
|
||||||
|
@info "No violated cuts found. Disabling callback."
|
||||||
|
callback_disabled = true
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# Set up cut callback
|
||||||
|
set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
|
||||||
|
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
|
||||||
|
|
||||||
|
stats = Dict()
|
||||||
|
stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
|
||||||
|
stats["ExpertDualGmi: time convert"] = stats_time_convert
|
||||||
|
stats["ExpertDualGmi: time tableau"] = stats_time_tableau
|
||||||
|
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
|
||||||
|
return stats
|
||||||
|
end
|
||||||
|
|
||||||
|
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
|
||||||
|
vars = all_variables(model)
|
||||||
|
nrows, ncols = size(cs.lhs)
|
||||||
|
|
||||||
|
@timeit "Transpose LHS" begin
|
||||||
|
lhs_t = spzeros(ncols, nrows)
|
||||||
|
ftranspose!(lhs_t, cs.lhs, x -> x)
|
||||||
|
lhs_t_rows = rowvals(lhs_t)
|
||||||
|
lhs_t_vals = nonzeros(lhs_t)
|
||||||
|
end
|
||||||
|
|
||||||
|
constrs = []
|
||||||
|
gmi_exps = []
|
||||||
|
for i = 1:nrows
|
||||||
|
c = nothing
|
||||||
|
gmi_exp = nothing
|
||||||
|
gmi_exp2 = nothing
|
||||||
|
@timeit "Build expr" begin
|
||||||
|
expr = AffExpr()
|
||||||
|
for k in nzrange(lhs_t, i)
|
||||||
|
add_to_expression!(expr, lhs_t_vals[k], vars[lhs_t_rows[k]])
|
||||||
|
end
|
||||||
|
end
|
||||||
|
@timeit "Add constraints" begin
|
||||||
|
if isinf(cs.ub[i])
|
||||||
|
c = @constraint(model, cs.lb[i] <= expr)
|
||||||
|
gmi_exp = cs.lb[i] - expr
|
||||||
|
elseif isinf(cs.lb[i])
|
||||||
|
c = @constraint(model, expr <= cs.ub[i])
|
||||||
|
gmi_exp = expr - cs.ub[i]
|
||||||
|
else
|
||||||
|
c = @constraint(model, cs.lb[i] <= expr <= cs.ub[i])
|
||||||
|
gmi_exp = cs.lb[i] - expr
|
||||||
|
gmi_exp2 = expr - cs.ub[i]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
@timeit "Update structs" begin
|
||||||
|
push!(constrs, c)
|
||||||
|
push!(gmi_exps, gmi_exp)
|
||||||
|
if !isnothing(gmi_exp2)
|
||||||
|
push!(gmi_exps, gmi_exp2)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return constrs, gmi_exps
|
||||||
|
end
|
||||||
|
|
||||||
|
function _dualgmi_features(h5_filename, extractor)
|
||||||
|
h5 = H5File(h5_filename, "r")
|
||||||
|
try
|
||||||
|
return extractor.get_instance_features(h5)
|
||||||
|
finally
|
||||||
|
h5.close()
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function _dualgmi_generate(train_h5, model)
|
||||||
|
@timeit "Read problem data" begin
|
||||||
|
data = ProblemData(model)
|
||||||
|
end
|
||||||
|
@timeit "Convert to standard form" begin
|
||||||
|
data_s, transforms = convert_to_standard_form(data)
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Collect cuts from H5 files" begin
|
||||||
|
vars_to_unique_basis_offset = Dict()
|
||||||
|
unique_basis_vars = nothing
|
||||||
|
unique_basis_sizes = nothing
|
||||||
|
unique_basis_rows = nothing
|
||||||
|
|
||||||
|
for h5_filename in train_h5
|
||||||
|
h5 = H5File(h5_filename, "r")
|
||||||
|
cut_basis_vars = h5.get_array("cuts_basis_vars")
|
||||||
|
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
||||||
|
cut_rows = h5.get_array("cuts_rows")
|
||||||
|
ncuts, nvars = size(cut_basis_vars)
|
||||||
|
if unique_basis_vars === nothing
|
||||||
|
unique_basis_vars = Matrix{Int}(undef, 0, nvars)
|
||||||
|
unique_basis_sizes = Matrix{Int}(undef, 0, 4)
|
||||||
|
unique_basis_rows = Dict{Int,Set{Int}}()
|
||||||
|
end
|
||||||
|
for i in 1:ncuts
|
||||||
|
vars = cut_basis_vars[i, :]
|
||||||
|
sizes = cut_basis_sizes[i, :]
|
||||||
|
row = cut_rows[i]
|
||||||
|
if vars ∉ keys(vars_to_unique_basis_offset)
|
||||||
|
offset = size(unique_basis_vars)[1] + 1
|
||||||
|
vars_to_unique_basis_offset[vars] = offset
|
||||||
|
unique_basis_vars = [unique_basis_vars; vars']
|
||||||
|
unique_basis_sizes = [unique_basis_sizes; sizes']
|
||||||
|
unique_basis_rows[offset] = Set()
|
||||||
|
end
|
||||||
|
offset = vars_to_unique_basis_offset[vars]
|
||||||
|
push!(unique_basis_rows[offset], row)
|
||||||
|
end
|
||||||
|
h5.close()
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Compute tableaus and cuts" begin
|
||||||
|
all_cuts = nothing
|
||||||
|
for (offset, rows) in unique_basis_rows
|
||||||
|
try
|
||||||
|
vbb, vnn, cbb, cnn = unique_basis_sizes[offset, :]
|
||||||
|
current_basis = Basis(;
|
||||||
|
var_basic = unique_basis_vars[offset, 1:vbb],
|
||||||
|
var_nonbasic = unique_basis_vars[offset, vbb+1:vbb+vnn],
|
||||||
|
constr_basic = unique_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
|
||||||
|
constr_nonbasic = unique_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
||||||
|
)
|
||||||
|
|
||||||
|
tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
|
||||||
|
cuts_s = compute_gmi(data_s, tableau)
|
||||||
|
cuts = backwards(transforms, cuts_s)
|
||||||
|
if all_cuts === nothing
|
||||||
|
all_cuts = cuts
|
||||||
|
else
|
||||||
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
|
||||||
|
all_cuts.lb = [all_cuts.lb; cuts.lb]
|
||||||
|
all_cuts.ub = [all_cuts.ub; cuts.ub]
|
||||||
|
end
|
||||||
|
catch e
|
||||||
|
if isa(e, AssertionError)
|
||||||
|
@warn "Numerical error detected. Skipping cuts from current tableau."
|
||||||
|
continue
|
||||||
|
else
|
||||||
|
rethrow(e)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return all_cuts
|
||||||
|
end
|
||||||
|
|
||||||
|
function _dualgmi_set_callback(model, all_cuts)
|
||||||
|
function cut_callback(cb_data)
|
||||||
|
if all_cuts !== nothing
|
||||||
|
constrs = build_constraints(model, all_cuts)
|
||||||
|
@info "Enforcing $(length(constrs)) cuts..."
|
||||||
|
for c in constrs
|
||||||
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
||||||
|
end
|
||||||
|
all_cuts = nothing
|
||||||
|
end
|
||||||
|
end
|
||||||
|
set_attribute(model, MOI.UserCutCallback(), cut_callback)
|
||||||
|
end
|
||||||
|
|
||||||
|
function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5)
|
||||||
|
x = hcat([_dualgmi_features(filename, data.extractor) for filename in train_h5]...)'
|
||||||
|
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = length(train_h5))
|
||||||
|
model.fit(x)
|
||||||
|
data.model = model
|
||||||
|
data.train_h5 = train_h5
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _)
|
||||||
|
reset_timer!()
|
||||||
|
|
||||||
|
@timeit "Extract features" begin
|
||||||
|
x = _dualgmi_features(test_h5, data.extractor)
|
||||||
|
x = reshape(x, 1, length(x))
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Find neighbors" begin
|
||||||
|
neigh_dist, neigh_ind = data.model.kneighbors(x, return_distance = true)
|
||||||
|
neigh_ind = neigh_ind .+ 1
|
||||||
|
N = length(neigh_dist)
|
||||||
|
k = min(N, data.k)
|
||||||
|
|
||||||
|
if data.strategy == "near"
|
||||||
|
selected = collect(1:k)
|
||||||
|
elseif data.strategy == "far"
|
||||||
|
selected = collect((N - k + 1) : N)
|
||||||
|
elseif data.strategy == "rand"
|
||||||
|
selected = shuffle(collect(1:N))[1:k]
|
||||||
|
else
|
||||||
|
error("unknown strategy: $(data.strategy)")
|
||||||
|
end
|
||||||
|
|
||||||
|
@info "Dual GMI: Selected neighbors ($(data.strategy)):"
|
||||||
|
neigh_dist = neigh_dist[selected]
|
||||||
|
neigh_ind = neigh_ind[selected]
|
||||||
|
for i in 1:k
|
||||||
|
h5_filename = data.train_h5[neigh_ind[i]]
|
||||||
|
dist = neigh_dist[i]
|
||||||
|
@info " $(h5_filename) dist=$(dist)"
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@info "Dual GMI: Generating cuts..."
|
||||||
|
@timeit "Generate cuts" begin
|
||||||
|
time_generate = @elapsed begin
|
||||||
|
cuts = _dualgmi_generate(data.train_h5[neigh_ind], model)
|
||||||
|
end
|
||||||
|
@info "Dual GMI: Generated $(length(cuts.lb)) unique cuts in $(time_generate) seconds"
|
||||||
|
end
|
||||||
|
|
||||||
|
@timeit "Set callback" begin
|
||||||
|
_dualgmi_set_callback(model, cuts)
|
||||||
|
end
|
||||||
|
|
||||||
|
print_timer()
|
||||||
|
|
||||||
|
stats = Dict()
|
||||||
|
stats["KnnDualGmi: k"] = k
|
||||||
|
stats["KnnDualGmi: strategy"] = data.strategy
|
||||||
|
stats["KnnDualGmi: cuts"] = length(cuts.lb)
|
||||||
|
stats["KnnDualGmi: time generate"] = time_generate
|
||||||
|
return stats
|
||||||
|
end
|
||||||
|
|
||||||
|
function __init_gmi_dual__()
|
||||||
|
@pydef mutable struct Class1
|
||||||
|
function fit(_, _) end
|
||||||
|
function before_mip(self, test_h5, model, stats)
|
||||||
|
ExpertDualGmiComponent_before_mip(test_h5, model.inner, stats)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
copy!(ExpertDualGmiComponent, Class1)
|
||||||
|
|
||||||
|
@pydef mutable struct Class2
|
||||||
|
function __init__(self; extractor, k = 3, strategy = "near")
|
||||||
|
self.data = _KnnDualGmiData(; extractor, k, strategy)
|
||||||
|
end
|
||||||
|
function fit(self, train_h5)
|
||||||
|
KnnDualGmiComponent_fit(self.data, train_h5)
|
||||||
|
end
|
||||||
|
function before_mip(self, test_h5, model, stats)
|
||||||
|
return @time KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
copy!(KnnDualGmiComponent, Class2)
|
||||||
|
end
|
||||||
|
|
||||||
|
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent
|
||||||
|
|
||||||
@@ -9,6 +9,8 @@ function ProblemData(model::Model)::ProblemData
|
|||||||
|
|
||||||
# Objective function
|
# Objective function
|
||||||
obj = objective_function(model)
|
obj = objective_function(model)
|
||||||
|
obj_offset = obj.constant
|
||||||
|
obj_sense = objective_sense(model)
|
||||||
obj = [v ∈ keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
|
obj = [v ∈ keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
|
||||||
|
|
||||||
# Variable types, lower bounds and upper bounds
|
# Variable types, lower bounds and upper bounds
|
||||||
@@ -86,8 +88,9 @@ function ProblemData(model::Model)::ProblemData
|
|||||||
@assert length(constr_ub) == m
|
@assert length(constr_ub) == m
|
||||||
|
|
||||||
return ProblemData(
|
return ProblemData(
|
||||||
obj_offset = 0.0;
|
|
||||||
obj,
|
obj,
|
||||||
|
obj_offset,
|
||||||
|
obj_sense,
|
||||||
constr_lb,
|
constr_lb,
|
||||||
constr_ub,
|
constr_ub,
|
||||||
constr_lhs,
|
constr_lhs,
|
||||||
@@ -102,6 +105,7 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
|
|||||||
model = Model()
|
model = Model()
|
||||||
|
|
||||||
# Variables
|
# Variables
|
||||||
|
obj_expr = AffExpr(data.obj_offset)
|
||||||
nvars = length(data.obj)
|
nvars = length(data.obj)
|
||||||
@variable(model, x[1:nvars])
|
@variable(model, x[1:nvars])
|
||||||
for i = 1:nvars
|
for i = 1:nvars
|
||||||
@@ -117,8 +121,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
|
|||||||
if isfinite(data.var_ub[i])
|
if isfinite(data.var_ub[i])
|
||||||
set_upper_bound(x[i], data.var_ub[i])
|
set_upper_bound(x[i], data.var_ub[i])
|
||||||
end
|
end
|
||||||
set_objective_coefficient(model, x[i], data.obj[i])
|
add_to_expression!(obj_expr, x[i], data.obj[i])
|
||||||
end
|
end
|
||||||
|
@objective(model, data.obj_sense, obj_expr)
|
||||||
|
|
||||||
# Constraints
|
# Constraints
|
||||||
lhs = data.constr_lhs * x
|
lhs = data.constr_lhs * x
|
||||||
@@ -140,19 +145,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
|
|||||||
end
|
end
|
||||||
|
|
||||||
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
|
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
|
||||||
vars = all_variables(model)
|
constrs = build_constraints(model, cs)
|
||||||
nrows, _ = size(cs.lhs)
|
for c in constrs
|
||||||
constrs = []
|
add_constraint(model, c)
|
||||||
for i = 1:nrows
|
|
||||||
c = nothing
|
|
||||||
if isinf(cs.ub[i])
|
|
||||||
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars))
|
|
||||||
elseif isinf(cs.lb[i])
|
|
||||||
c = @constraint(model, dot(cs.lhs[i, :], vars) <= cs.ub[i])
|
|
||||||
else
|
|
||||||
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
|
|
||||||
end
|
|
||||||
push!(constrs, c)
|
|
||||||
end
|
end
|
||||||
return constrs
|
return constrs
|
||||||
end
|
end
|
||||||
@@ -164,4 +159,30 @@ function set_warm_start(model::JuMP.Model, x::Vector{Float64})
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
export to_model, ProblemData, add_constraint_set, set_warm_start
|
function build_constraints(model::JuMP.Model, cs::ConstraintSet)
|
||||||
|
vars = all_variables(model)
|
||||||
|
nrows, _ = size(cs.lhs)
|
||||||
|
constrs = []
|
||||||
|
for i = 1:nrows
|
||||||
|
# Build LHS expression
|
||||||
|
row = cs.lhs[i, :]
|
||||||
|
lhs_expr = AffExpr()
|
||||||
|
for (offset, val) in enumerate(row.nzval)
|
||||||
|
add_to_expression!(lhs_expr, vars[row.nzind[offset]], val)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Build JuMP constraint
|
||||||
|
c = nothing
|
||||||
|
if isinf(cs.ub[i])
|
||||||
|
c = @build_constraint(cs.lb[i] <= lhs_expr)
|
||||||
|
elseif isinf(cs.lb[i])
|
||||||
|
c = @build_constraint(lhs_expr <= cs.ub[i])
|
||||||
|
else
|
||||||
|
c = @build_constraint(cs.lb[i] <= lhs_expr <= cs.ub[i])
|
||||||
|
end
|
||||||
|
push!(constrs, c)
|
||||||
|
end
|
||||||
|
return constrs
|
||||||
|
end
|
||||||
|
|
||||||
|
export to_model, ProblemData, add_constraint_set, set_warm_start, build_constraints
|
||||||
|
|||||||
51
src/Cuts/tableau/numerics.jl
Normal file
51
src/Cuts/tableau/numerics.jl
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
@inline frac(x::Float64) = x - floor(x)
|
||||||
|
|
||||||
|
@inline frac2(x::Float64) = ceil(x) - x
|
||||||
|
|
||||||
|
function assert_leq(a, b; atol = 0.01)
|
||||||
|
if !all(a .<= b .+ atol)
|
||||||
|
delta = a .- b
|
||||||
|
for i in eachindex(delta)
|
||||||
|
if delta[i] > atol
|
||||||
|
@info "Assertion failed: a[$i] = $(a[i]) <= $(b[i]) = b[$i]"
|
||||||
|
end
|
||||||
|
end
|
||||||
|
error("assert_leq failed")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function assert_eq(a, b; atol = 1e-4)
|
||||||
|
if !all(abs.(a .- b) .<= atol)
|
||||||
|
delta = abs.(a .- b)
|
||||||
|
for i in eachindex(delta)
|
||||||
|
if delta[i] > atol
|
||||||
|
@info "Assertion failed: a[$i] = $(a[i]) == $(b[i]) = b[$i]"
|
||||||
|
end
|
||||||
|
end
|
||||||
|
error("assert_eq failed")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
|
||||||
|
for i = 1:length(cuts.lb)
|
||||||
|
val = cuts.lhs[i, :]' * x
|
||||||
|
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
|
||||||
|
throw(ErrorException("inequality fails to cut off fractional solution"))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
|
||||||
|
for i = 1:length(cuts.lb)
|
||||||
|
val = cuts.lhs[i, :]' * x
|
||||||
|
ub = cuts.ub[i]
|
||||||
|
lb = cuts.lb[i]
|
||||||
|
if (val >= ub) || (val <= lb)
|
||||||
|
throw(
|
||||||
|
ErrorException(
|
||||||
|
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
@@ -7,6 +7,7 @@ using SparseArrays
|
|||||||
Base.@kwdef mutable struct ProblemData
|
Base.@kwdef mutable struct ProblemData
|
||||||
obj::Vector{Float64}
|
obj::Vector{Float64}
|
||||||
obj_offset::Float64
|
obj_offset::Float64
|
||||||
|
obj_sense::Any
|
||||||
constr_lb::Vector{Float64}
|
constr_lb::Vector{Float64}
|
||||||
constr_ub::Vector{Float64}
|
constr_ub::Vector{Float64}
|
||||||
constr_lhs::SparseMatrixCSC
|
constr_lhs::SparseMatrixCSC
|
||||||
|
|||||||
@@ -54,8 +54,8 @@ end
|
|||||||
|
|
||||||
function compute_tableau(
|
function compute_tableau(
|
||||||
data::ProblemData,
|
data::ProblemData,
|
||||||
basis::Basis,
|
basis::Basis;
|
||||||
x::Vector{Float64};
|
x::Union{Nothing,Vector{Float64}} = nothing,
|
||||||
rows::Union{Vector{Int},Nothing} = nothing,
|
rows::Union{Vector{Int},Nothing} = nothing,
|
||||||
tol = 1e-8,
|
tol = 1e-8,
|
||||||
)::Tableau
|
)::Tableau
|
||||||
@@ -73,11 +73,12 @@ function compute_tableau(
|
|||||||
factor = klu(sparse(lhs_b'))
|
factor = klu(sparse(lhs_b'))
|
||||||
end
|
end
|
||||||
|
|
||||||
@timeit "Compute tableau LHS" begin
|
@timeit "Compute tableau" begin
|
||||||
tableau_lhs_I = Int[]
|
@timeit "Initialize" begin
|
||||||
tableau_lhs_J = Int[]
|
tableau_rhs = zeros(length(rows))
|
||||||
tableau_lhs_V = Float64[]
|
tableau_lhs = zeros(length(rows), ncols)
|
||||||
for k = 1:length(rows)
|
end
|
||||||
|
for k in eachindex(1:length(rows))
|
||||||
@timeit "Prepare inputs" begin
|
@timeit "Prepare inputs" begin
|
||||||
i = rows[k]
|
i = rows[k]
|
||||||
e = zeros(nrows)
|
e = zeros(nrows)
|
||||||
@@ -87,25 +88,14 @@ function compute_tableau(
|
|||||||
sol = factor \ e
|
sol = factor \ e
|
||||||
end
|
end
|
||||||
@timeit "Multiply" begin
|
@timeit "Multiply" begin
|
||||||
row = sol' * data.constr_lhs
|
tableau_lhs[k, :] = sol' * data.constr_lhs
|
||||||
end
|
tableau_rhs[k] = sol' * data.constr_ub
|
||||||
@timeit "Sparsify & copy" begin
|
|
||||||
for (j, v) in enumerate(row)
|
|
||||||
if abs(v) < tol
|
|
||||||
continue
|
|
||||||
end
|
|
||||||
push!(tableau_lhs_I, k)
|
|
||||||
push!(tableau_lhs_J, j)
|
|
||||||
push!(tableau_lhs_V, v)
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
@timeit "Sparsify" begin
|
||||||
|
tableau_lhs[abs.(tableau_lhs) .<= tol] .= 0
|
||||||
|
tableau_lhs = sparse(tableau_lhs)
|
||||||
end
|
end
|
||||||
tableau_lhs =
|
|
||||||
sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
|
|
||||||
end
|
|
||||||
|
|
||||||
@timeit "Compute tableau RHS" begin
|
|
||||||
tableau_rhs = [x[basis.var_basic]; zeros(length(basis.constr_basic))][rows]
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@timeit "Compute tableau objective row" begin
|
@timeit "Compute tableau objective row" begin
|
||||||
@@ -114,12 +104,13 @@ function compute_tableau(
|
|||||||
tableau_obj[abs.(tableau_obj).<tol] .= 0
|
tableau_obj[abs.(tableau_obj).<tol] .= 0
|
||||||
end
|
end
|
||||||
|
|
||||||
return Tableau(
|
# Compute z if solution is provided
|
||||||
obj = tableau_obj,
|
z = 0
|
||||||
lhs = tableau_lhs,
|
if x !== nothing
|
||||||
rhs = tableau_rhs,
|
z = dot(data.obj, x)
|
||||||
z = dot(data.obj, x),
|
end
|
||||||
)
|
|
||||||
|
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
|
||||||
end
|
end
|
||||||
|
|
||||||
export get_basis, get_x, compute_tableau
|
export get_basis, get_x, compute_tableau
|
||||||
|
|||||||
@@ -6,12 +6,16 @@ module MIPLearn
|
|||||||
|
|
||||||
using PyCall
|
using PyCall
|
||||||
using SparseArrays
|
using SparseArrays
|
||||||
|
using PrecompileTools: @setup_workload, @compile_workload
|
||||||
|
|
||||||
|
|
||||||
include("collectors.jl")
|
include("collectors.jl")
|
||||||
include("components.jl")
|
include("components.jl")
|
||||||
include("extractors.jl")
|
include("extractors.jl")
|
||||||
include("io.jl")
|
include("io.jl")
|
||||||
include("problems/setcover.jl")
|
include("problems/setcover.jl")
|
||||||
|
include("problems/stab.jl")
|
||||||
|
include("problems/tsp.jl")
|
||||||
include("solvers/jump.jl")
|
include("solvers/jump.jl")
|
||||||
include("solvers/learning.jl")
|
include("solvers/learning.jl")
|
||||||
|
|
||||||
@@ -21,6 +25,8 @@ function __init__()
|
|||||||
__init_extractors__()
|
__init_extractors__()
|
||||||
__init_io__()
|
__init_io__()
|
||||||
__init_problems_setcover__()
|
__init_problems_setcover__()
|
||||||
|
__init_problems_stab__()
|
||||||
|
__init_problems_tsp__()
|
||||||
__init_solvers_jump__()
|
__init_solvers_jump__()
|
||||||
__init_solvers_learning__()
|
__init_solvers_learning__()
|
||||||
end
|
end
|
||||||
@@ -28,4 +34,51 @@ end
|
|||||||
include("BB/BB.jl")
|
include("BB/BB.jl")
|
||||||
include("Cuts/Cuts.jl")
|
include("Cuts/Cuts.jl")
|
||||||
|
|
||||||
|
# Precompilation
|
||||||
|
# =============================================================================
|
||||||
|
|
||||||
|
function __precompile_cuts__()
|
||||||
|
function build_model(mps_filename)
|
||||||
|
model = read_from_file(mps_filename)
|
||||||
|
set_optimizer(model, SCIP.Optimizer)
|
||||||
|
return JumpModel(model)
|
||||||
|
end
|
||||||
|
BASEDIR = dirname(@__FILE__)
|
||||||
|
mps_filename = "$BASEDIR/../test/fixtures/bell5.mps.gz"
|
||||||
|
h5_filename = "$BASEDIR/../test/fixtures/bell5.h5"
|
||||||
|
collect_gmi_dual(
|
||||||
|
mps_filename;
|
||||||
|
optimizer=HiGHS.Optimizer,
|
||||||
|
max_rounds = 10,
|
||||||
|
max_cuts_per_round = 500,
|
||||||
|
)
|
||||||
|
knn = KnnDualGmiComponent(
|
||||||
|
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
|
||||||
|
k = 2,
|
||||||
|
)
|
||||||
|
knn.fit([h5_filename, h5_filename])
|
||||||
|
solver = LearningSolver(
|
||||||
|
components = [
|
||||||
|
ExpertPrimalComponent(action = SetWarmStart()),
|
||||||
|
knn,
|
||||||
|
],
|
||||||
|
skip_lp = true,
|
||||||
|
)
|
||||||
|
solver.optimize(mps_filename, build_model)
|
||||||
|
end
|
||||||
|
|
||||||
|
@setup_workload begin
|
||||||
|
using SCIP
|
||||||
|
using HiGHS
|
||||||
|
using MIPLearn.Cuts
|
||||||
|
using PrecompileTools: @setup_workload, @compile_workload
|
||||||
|
|
||||||
|
__init__()
|
||||||
|
Cuts.__init__()
|
||||||
|
|
||||||
|
@compile_workload begin
|
||||||
|
__precompile_cuts__()
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
end # module
|
end # module
|
||||||
|
|||||||
@@ -2,19 +2,21 @@
|
|||||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
global MinProbabilityClassifier = PyNULL()
|
|
||||||
global SingleClassFix = PyNULL()
|
|
||||||
global PrimalComponentAction = PyNULL()
|
|
||||||
global SetWarmStart = PyNULL()
|
|
||||||
global FixVariables = PyNULL()
|
|
||||||
global EnforceProximity = PyNULL()
|
global EnforceProximity = PyNULL()
|
||||||
global ExpertPrimalComponent = PyNULL()
|
global ExpertPrimalComponent = PyNULL()
|
||||||
|
global FixVariables = PyNULL()
|
||||||
global IndependentVarsPrimalComponent = PyNULL()
|
global IndependentVarsPrimalComponent = PyNULL()
|
||||||
global JointVarsPrimalComponent = PyNULL()
|
global JointVarsPrimalComponent = PyNULL()
|
||||||
global SolutionConstructor = PyNULL()
|
global MemorizingCutsComponent = PyNULL()
|
||||||
|
global MemorizingLazyComponent = PyNULL()
|
||||||
global MemorizingPrimalComponent = PyNULL()
|
global MemorizingPrimalComponent = PyNULL()
|
||||||
global SelectTopSolutions = PyNULL()
|
|
||||||
global MergeTopSolutions = PyNULL()
|
global MergeTopSolutions = PyNULL()
|
||||||
|
global MinProbabilityClassifier = PyNULL()
|
||||||
|
global PrimalComponentAction = PyNULL()
|
||||||
|
global SelectTopSolutions = PyNULL()
|
||||||
|
global SetWarmStart = PyNULL()
|
||||||
|
global SingleClassFix = PyNULL()
|
||||||
|
global SolutionConstructor = PyNULL()
|
||||||
|
|
||||||
function __init_components__()
|
function __init_components__()
|
||||||
copy!(
|
copy!(
|
||||||
@@ -51,6 +53,14 @@ function __init_components__()
|
|||||||
)
|
)
|
||||||
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
|
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
|
||||||
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
|
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
|
||||||
|
copy!(
|
||||||
|
MemorizingCutsComponent,
|
||||||
|
pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent,
|
||||||
|
)
|
||||||
|
copy!(
|
||||||
|
MemorizingLazyComponent,
|
||||||
|
pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent,
|
||||||
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
export MinProbabilityClassifier,
|
export MinProbabilityClassifier,
|
||||||
@@ -65,4 +75,6 @@ export MinProbabilityClassifier,
|
|||||||
SolutionConstructor,
|
SolutionConstructor,
|
||||||
MemorizingPrimalComponent,
|
MemorizingPrimalComponent,
|
||||||
SelectTopSolutions,
|
SelectTopSolutions,
|
||||||
MergeTopSolutions
|
MergeTopSolutions,
|
||||||
|
MemorizingCutsComponent,
|
||||||
|
MemorizingLazyComponent
|
||||||
|
|||||||
@@ -46,7 +46,7 @@ end
|
|||||||
function write_jld2(
|
function write_jld2(
|
||||||
objs::Vector,
|
objs::Vector,
|
||||||
dirname::AbstractString;
|
dirname::AbstractString;
|
||||||
prefix::AbstractString=""
|
prefix::AbstractString = "",
|
||||||
)::Vector{String}
|
)::Vector{String}
|
||||||
mkpath(dirname)
|
mkpath(dirname)
|
||||||
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]
|
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]
|
||||||
|
|||||||
@@ -13,12 +13,11 @@ function __init_problems_setcover__()
|
|||||||
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
|
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
|
||||||
end
|
end
|
||||||
|
|
||||||
function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
|
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
|
||||||
if data isa String
|
if data isa String
|
||||||
data = read_pkl_gz(data)
|
data = read_pkl_gz(data)
|
||||||
end
|
end
|
||||||
model = Model(optimizer)
|
model = Model(optimizer)
|
||||||
set_silent(model)
|
|
||||||
n_elements, n_sets = size(data.incidence_matrix)
|
n_elements, n_sets = size(data.incidence_matrix)
|
||||||
E = 0:n_elements-1
|
E = 0:n_elements-1
|
||||||
S = 0:n_sets-1
|
S = 0:n_sets-1
|
||||||
@@ -32,4 +31,4 @@ function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
|
|||||||
return JumpModel(model)
|
return JumpModel(model)
|
||||||
end
|
end
|
||||||
|
|
||||||
export SetCoverData, SetCoverGenerator, build_setcover_model
|
export SetCoverData, SetCoverGenerator, build_setcover_model_jump
|
||||||
|
|||||||
59
src/problems/stab.jl
Normal file
59
src/problems/stab.jl
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using JuMP
|
||||||
|
using HiGHS
|
||||||
|
|
||||||
|
global MaxWeightStableSetData = PyNULL()
|
||||||
|
global MaxWeightStableSetGenerator = PyNULL()
|
||||||
|
|
||||||
|
function __init_problems_stab__()
|
||||||
|
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
|
||||||
|
copy!(
|
||||||
|
MaxWeightStableSetGenerator,
|
||||||
|
pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function build_stab_model_jump(data::Any; optimizer = HiGHS.Optimizer)
|
||||||
|
nx = pyimport("networkx")
|
||||||
|
|
||||||
|
if data isa String
|
||||||
|
data = read_pkl_gz(data)
|
||||||
|
end
|
||||||
|
model = Model(optimizer)
|
||||||
|
|
||||||
|
# Variables and objective function
|
||||||
|
nodes = data.graph.nodes
|
||||||
|
x = @variable(model, x[nodes], Bin)
|
||||||
|
@objective(model, Min, sum(-data.weights[i+1] * x[i] for i in nodes))
|
||||||
|
|
||||||
|
# Edge inequalities
|
||||||
|
for (i1, i2) in data.graph.edges
|
||||||
|
@constraint(model, x[i1] + x[i2] <= 1, base_name = "eq_edge[$i1,$i2]")
|
||||||
|
end
|
||||||
|
|
||||||
|
function cuts_separate(cb_data)
|
||||||
|
x_val = callback_value.(Ref(cb_data), x)
|
||||||
|
violations = []
|
||||||
|
for clique in nx.find_cliques(data.graph)
|
||||||
|
if sum(x_val[i] for i in clique) > 1.0001
|
||||||
|
push!(violations, sort(clique))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return violations
|
||||||
|
end
|
||||||
|
|
||||||
|
function cuts_enforce(violations)
|
||||||
|
@info "Adding $(length(violations)) clique cuts..."
|
||||||
|
for clique in violations
|
||||||
|
constr = @build_constraint(sum(x[i] for i in clique) <= 1)
|
||||||
|
submit(model, constr)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return JumpModel(model, cuts_separate = cuts_separate, cuts_enforce = cuts_enforce)
|
||||||
|
end
|
||||||
|
|
||||||
|
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump
|
||||||
71
src/problems/tsp.jl
Normal file
71
src/problems/tsp.jl
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using JuMP
|
||||||
|
|
||||||
|
global TravelingSalesmanData = PyNULL()
|
||||||
|
global TravelingSalesmanGenerator = PyNULL()
|
||||||
|
|
||||||
|
function __init_problems_tsp__()
|
||||||
|
copy!(TravelingSalesmanData, pyimport("miplearn.problems.tsp").TravelingSalesmanData)
|
||||||
|
copy!(
|
||||||
|
TravelingSalesmanGenerator,
|
||||||
|
pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function build_tsp_model_jump(data::Any; optimizer)
|
||||||
|
nx = pyimport("networkx")
|
||||||
|
|
||||||
|
if data isa String
|
||||||
|
data = read_pkl_gz(data)
|
||||||
|
end
|
||||||
|
model = Model(optimizer)
|
||||||
|
edges = [(i, j) for i = 1:data.n_cities for j = (i+1):data.n_cities]
|
||||||
|
x = @variable(model, x[edges], Bin)
|
||||||
|
@objective(model, Min, sum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
|
||||||
|
|
||||||
|
# Eq: Must choose two edges adjacent to each node
|
||||||
|
@constraint(
|
||||||
|
model,
|
||||||
|
eq_degree[i in 1:data.n_cities],
|
||||||
|
sum(x[(min(i, j), max(i, j))] for j = 1:data.n_cities if i != j) == 2
|
||||||
|
)
|
||||||
|
|
||||||
|
function lazy_separate(cb_data)
|
||||||
|
x_val = callback_value.(Ref(cb_data), x)
|
||||||
|
violations = []
|
||||||
|
selected_edges = [e for e in edges if x_val[e] > 0.5]
|
||||||
|
graph = nx.Graph()
|
||||||
|
graph.add_edges_from(selected_edges)
|
||||||
|
for component in nx.connected_components(graph)
|
||||||
|
if length(component) < data.n_cities
|
||||||
|
cut_edges = [
|
||||||
|
[e[1], e[2]] for
|
||||||
|
e in edges if (e[1] ∈ component && e[2] ∉ component) ||
|
||||||
|
(e[1] ∉ component && e[2] ∈ component)
|
||||||
|
]
|
||||||
|
push!(violations, cut_edges)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return violations
|
||||||
|
end
|
||||||
|
|
||||||
|
function lazy_enforce(violations)
|
||||||
|
@info "Adding $(length(violations)) subtour elimination eqs..."
|
||||||
|
for violation in violations
|
||||||
|
constr = @build_constraint(sum(x[(e[1], e[2])] for e in violation) >= 2)
|
||||||
|
submit(model, constr)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return JumpModel(
|
||||||
|
model,
|
||||||
|
lazy_enforce = lazy_enforce,
|
||||||
|
lazy_separate = lazy_separate,
|
||||||
|
lp_optimizer = optimizer,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
export TravelingSalesmanData, TravelingSalesmanGenerator, build_tsp_model_jump
|
||||||
@@ -4,9 +4,31 @@
|
|||||||
|
|
||||||
using JuMP
|
using JuMP
|
||||||
using HiGHS
|
using HiGHS
|
||||||
|
using JSON
|
||||||
|
|
||||||
global JumpModel = PyNULL()
|
global JumpModel = PyNULL()
|
||||||
|
|
||||||
|
Base.@kwdef mutable struct _JumpModelExtData
|
||||||
|
aot_cuts = nothing
|
||||||
|
cb_data = nothing
|
||||||
|
cuts = []
|
||||||
|
lazy = []
|
||||||
|
where::Symbol = :WHERE_DEFAULT
|
||||||
|
cuts_enforce::Union{Function,Nothing} = nothing
|
||||||
|
cuts_separate::Union{Function,Nothing} = nothing
|
||||||
|
lazy_enforce::Union{Function,Nothing} = nothing
|
||||||
|
lazy_separate::Union{Function,Nothing} = nothing
|
||||||
|
lp_optimizer::Any
|
||||||
|
end
|
||||||
|
|
||||||
|
function JuMP.copy_extension_data(
|
||||||
|
old_ext::_JumpModelExtData,
|
||||||
|
new_model::AbstractModel,
|
||||||
|
::AbstractModel,
|
||||||
|
)
|
||||||
|
new_model.ext[:miplearn] = _JumpModelExtData(lp_optimizer = old_ext.lp_optimizer)
|
||||||
|
end
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
function _add_constrs(
|
function _add_constrs(
|
||||||
@@ -35,6 +57,17 @@ function _add_constrs(
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function submit(model::JuMP.Model, constr)
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
if ext.where == :WHERE_CUTS
|
||||||
|
MOI.submit(model, MOI.UserCut(ext.cb_data), constr)
|
||||||
|
elseif ext.where == :WHERE_LAZY
|
||||||
|
MOI.submit(model, MOI.LazyConstraint(ext.cb_data), constr)
|
||||||
|
else
|
||||||
|
add_constraint(model, constr)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
function _extract_after_load(model::JuMP.Model, h5)
|
function _extract_after_load(model::JuMP.Model, h5)
|
||||||
@info "_extract_after_load"
|
@info "_extract_after_load"
|
||||||
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
||||||
@@ -110,6 +143,9 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
if isempty(names)
|
||||||
|
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
|
||||||
|
end
|
||||||
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
|
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
|
||||||
h5.put_sparse("static_constr_lhs", lhs)
|
h5.put_sparse("static_constr_lhs", lhs)
|
||||||
h5.put_array("static_constr_rhs", rhs)
|
h5.put_array("static_constr_rhs", rhs)
|
||||||
@@ -252,6 +288,11 @@ function _extract_after_mip(model::JuMP.Model, h5)
|
|||||||
rhs = h5.get_array("static_constr_rhs")
|
rhs = h5.get_array("static_constr_rhs")
|
||||||
slacks = abs.(lhs * x - rhs)
|
slacks = abs.(lhs * x - rhs)
|
||||||
h5.put_array("mip_constr_slacks", slacks)
|
h5.put_array("mip_constr_slacks", slacks)
|
||||||
|
|
||||||
|
# Cuts and lazy constraints
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
h5.put_scalar("mip_cuts", JSON.json(ext.cuts))
|
||||||
|
h5.put_scalar("mip_lazy", JSON.json(ext.lazy))
|
||||||
end
|
end
|
||||||
|
|
||||||
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
||||||
@@ -264,8 +305,53 @@ function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
|||||||
end
|
end
|
||||||
|
|
||||||
function _optimize(model::JuMP.Model)
|
function _optimize(model::JuMP.Model)
|
||||||
@info "_optimize"
|
# Set up cut callbacks
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
ext.cuts = []
|
||||||
|
function cut_callback(cb_data)
|
||||||
|
ext.cb_data = cb_data
|
||||||
|
ext.where = :WHERE_CUTS
|
||||||
|
if ext.aot_cuts !== nothing
|
||||||
|
@info "Enforcing $(length(ext.aot_cuts)) cuts ahead-of-time..."
|
||||||
|
violations = ext.aot_cuts
|
||||||
|
ext.aot_cuts = nothing
|
||||||
|
else
|
||||||
|
violations = ext.cuts_separate(cb_data)
|
||||||
|
for v in violations
|
||||||
|
push!(ext.cuts, v)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if !isempty(violations)
|
||||||
|
ext.cuts_enforce(violations)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if ext.cuts_separate !== nothing
|
||||||
|
set_attribute(model, MOI.UserCutCallback(), cut_callback)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Set up lazy constraint callbacks
|
||||||
|
ext.lazy = []
|
||||||
|
function lazy_callback(cb_data)
|
||||||
|
ext.cb_data = cb_data
|
||||||
|
ext.where = :WHERE_LAZY
|
||||||
|
violations = ext.lazy_separate(cb_data)
|
||||||
|
for v in violations
|
||||||
|
push!(ext.lazy, v)
|
||||||
|
end
|
||||||
|
if !isempty(violations)
|
||||||
|
ext.lazy_enforce(violations)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if ext.lazy_separate !== nothing
|
||||||
|
set_attribute(model, MOI.LazyConstraintCallback(), lazy_callback)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Optimize
|
||||||
optimize!(model)
|
optimize!(model)
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
|
ext.where = :WHERE_DEFAULT
|
||||||
|
ext.cb_data = nothing
|
||||||
flush(stdout)
|
flush(stdout)
|
||||||
Libc.flush_cstdio()
|
Libc.flush_cstdio()
|
||||||
end
|
end
|
||||||
@@ -273,9 +359,8 @@ end
|
|||||||
function _relax(model::JuMP.Model)
|
function _relax(model::JuMP.Model)
|
||||||
relaxed, _ = copy_model(model)
|
relaxed, _ = copy_model(model)
|
||||||
relax_integrality(relaxed)
|
relax_integrality(relaxed)
|
||||||
# FIXME: Remove hardcoded optimizer
|
set_optimizer(relaxed, model.ext[:miplearn].lp_optimizer)
|
||||||
set_optimizer(relaxed, HiGHS.Optimizer)
|
set_silent(relaxed)
|
||||||
# set_silent(relaxed)
|
|
||||||
return relaxed
|
return relaxed
|
||||||
end
|
end
|
||||||
|
|
||||||
@@ -291,16 +376,39 @@ function _set_warm_starts(model::JuMP.Model, var_names, var_values, stats)
|
|||||||
end
|
end
|
||||||
|
|
||||||
function _write(model::JuMP.Model, filename)
|
function _write(model::JuMP.Model, filename)
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
if ext.lazy_separate !== nothing
|
||||||
|
set_attribute(model, MOI.LazyConstraintCallback(), nothing)
|
||||||
|
end
|
||||||
|
if ext.cuts_separate !== nothing
|
||||||
|
set_attribute(model, MOI.UserCutCallback(), nothing)
|
||||||
|
end
|
||||||
write_to_file(model, filename)
|
write_to_file(model, filename)
|
||||||
end
|
end
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
function __init_solvers_jump__()
|
function __init_solvers_jump__()
|
||||||
@pydef mutable struct Class
|
AbstractModel = pyimport("miplearn.solvers.abstract").AbstractModel
|
||||||
|
@pydef mutable struct Class <: AbstractModel
|
||||||
|
|
||||||
function __init__(self, inner)
|
function __init__(
|
||||||
|
self,
|
||||||
|
inner;
|
||||||
|
cuts_enforce::Union{Function,Nothing} = nothing,
|
||||||
|
cuts_separate::Union{Function,Nothing} = nothing,
|
||||||
|
lazy_enforce::Union{Function,Nothing} = nothing,
|
||||||
|
lazy_separate::Union{Function,Nothing} = nothing,
|
||||||
|
lp_optimizer = HiGHS.Optimizer,
|
||||||
|
)
|
||||||
self.inner = inner
|
self.inner = inner
|
||||||
|
self.inner.ext[:miplearn] = _JumpModelExtData(
|
||||||
|
cuts_enforce = cuts_enforce,
|
||||||
|
cuts_separate = cuts_separate,
|
||||||
|
lazy_enforce = lazy_enforce,
|
||||||
|
lazy_separate = lazy_separate,
|
||||||
|
lp_optimizer = lp_optimizer,
|
||||||
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
add_constrs(
|
add_constrs(
|
||||||
@@ -336,6 +444,21 @@ function __init_solvers_jump__()
|
|||||||
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
|
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
|
||||||
|
|
||||||
write(self, filename) = _write(self.inner, filename)
|
write(self, filename) = _write(self.inner, filename)
|
||||||
|
|
||||||
|
function set_cuts(self, cuts)
|
||||||
|
self.inner.ext[:miplearn].aot_cuts = cuts
|
||||||
|
end
|
||||||
|
|
||||||
|
function lazy_enforce(self, violations)
|
||||||
|
self.inner.ext[:miplearn].lazy_enforce(violations)
|
||||||
|
end
|
||||||
|
|
||||||
|
function _lazy_enforce_collected(self)
|
||||||
|
ext = self.inner.ext[:miplearn]
|
||||||
|
if ext.lazy_enforce !== nothing
|
||||||
|
ext.lazy_enforce(ext.lazy)
|
||||||
|
end
|
||||||
|
end
|
||||||
end
|
end
|
||||||
copy!(JumpModel, Class)
|
copy!(JumpModel, Class)
|
||||||
end
|
end
|
||||||
|
|||||||
@@ -7,6 +7,7 @@ version = "0.1.0"
|
|||||||
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
|
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
|
||||||
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
|
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
|
||||||
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
|
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
|
||||||
|
GLPK = "60bf3e95-4087-53dc-ae20-288a0d20c6a6"
|
||||||
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
|
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
|
||||||
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
||||||
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
||||||
@@ -17,6 +18,8 @@ Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
|||||||
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
||||||
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
||||||
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
|
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
|
||||||
|
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
|
||||||
|
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||||
|
|
||||||
[compat]
|
[compat]
|
||||||
|
|||||||
BIN
test/fixtures/bell5.h5
vendored
BIN
test/fixtures/bell5.h5
vendored
Binary file not shown.
BIN
test/fixtures/stab-n50-00000.h5
vendored
Normal file
BIN
test/fixtures/stab-n50-00000.h5
vendored
Normal file
Binary file not shown.
BIN
test/fixtures/stab-n50-00000.pkl.gz
vendored
Normal file
BIN
test/fixtures/stab-n50-00000.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
test/fixtures/tsp-n20-00000.h5
vendored
Normal file
BIN
test/fixtures/tsp-n20-00000.h5
vendored
Normal file
Binary file not shown.
BIN
test/fixtures/tsp-n20-00000.mps.gz
vendored
Normal file
BIN
test/fixtures/tsp-n20-00000.mps.gz
vendored
Normal file
Binary file not shown.
BIN
test/fixtures/tsp-n20-00000.pkl.gz
vendored
Normal file
BIN
test/fixtures/tsp-n20-00000.pkl.gz
vendored
Normal file
Binary file not shown.
BIN
test/fixtures/vpm2.h5
vendored
BIN
test/fixtures/vpm2.h5
vendored
Binary file not shown.
@@ -89,11 +89,7 @@ function bb_run(optimizer_name, optimizer; large=true)
|
|||||||
BB.ReliabilityBranching(aggregation=:min, collect=true),
|
BB.ReliabilityBranching(aggregation=:min, collect=true),
|
||||||
]
|
]
|
||||||
h5 = H5File("$FIXTURES/$instance.h5")
|
h5 = H5File("$FIXTURES/$instance.h5")
|
||||||
mip_lower_bound = h5.get_scalar("mip_lower_bound")
|
mip_obj_bound = h5.get_scalar("mip_obj_bound")
|
||||||
mip_upper_bound = h5.get_scalar("mip_upper_bound")
|
|
||||||
mip_sense = h5.get_scalar("mip_sense")
|
|
||||||
mip_primal_bound =
|
|
||||||
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
|
|
||||||
h5.file.close()
|
h5.file.close()
|
||||||
|
|
||||||
mip = BB.init(optimizer)
|
mip = BB.init(optimizer)
|
||||||
@@ -101,7 +97,7 @@ function bb_run(optimizer_name, optimizer; large=true)
|
|||||||
@info optimizer_name, branch_rule, instance
|
@info optimizer_name, branch_rule, instance
|
||||||
@time BB.solve!(
|
@time BB.solve!(
|
||||||
mip,
|
mip,
|
||||||
initial_primal_bound=mip_primal_bound,
|
initial_primal_bound = mip_obj_bound,
|
||||||
print_interval = 1,
|
print_interval = 1,
|
||||||
node_limit = 25,
|
node_limit = 25,
|
||||||
branch_rule = branch_rule,
|
branch_rule = branch_rule,
|
||||||
|
|||||||
23
test/src/Cuts/tableau/test_gmi.jl
Normal file
23
test/src/Cuts/tableau/test_gmi.jl
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using HiGHS
|
||||||
|
|
||||||
|
function test_cuts_tableau_gmi()
|
||||||
|
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||||
|
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||||
|
collect_gmi(mps_filename, optimizer = HiGHS.Optimizer)
|
||||||
|
h5 = H5File(h5_filename, "r")
|
||||||
|
try
|
||||||
|
cuts_lb = h5.get_array("cuts_lb")
|
||||||
|
cuts_ub = h5.get_array("cuts_ub")
|
||||||
|
cuts_lhs = h5.get_sparse("cuts_lhs")
|
||||||
|
n_cuts = length(cuts_lb)
|
||||||
|
@test n_cuts > 0
|
||||||
|
@test n_cuts == length(cuts_ub)
|
||||||
|
@test cuts_lhs.shape[1] == n_cuts
|
||||||
|
finally
|
||||||
|
h5.close()
|
||||||
|
end
|
||||||
|
end
|
||||||
70
test/src/Cuts/tableau/test_gmi_dual.jl
Normal file
70
test/src/Cuts/tableau/test_gmi_dual.jl
Normal file
@@ -0,0 +1,70 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using SCIP
|
||||||
|
using HiGHS
|
||||||
|
using MIPLearn.Cuts
|
||||||
|
|
||||||
|
function test_cuts_tableau_gmi_dual_collect()
|
||||||
|
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||||
|
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||||
|
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
|
||||||
|
h5 = H5File(h5_filename, "r")
|
||||||
|
try
|
||||||
|
cuts_basis_vars = h5.get_array("cuts_basis_vars")
|
||||||
|
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
|
||||||
|
cuts_rows = h5.get_array("cuts_rows")
|
||||||
|
@test size(cuts_basis_vars) == (15, 402)
|
||||||
|
@test size(cuts_basis_sizes) == (15, 4)
|
||||||
|
@test size(cuts_rows) == (15,)
|
||||||
|
finally
|
||||||
|
h5.close()
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function test_cuts_tableau_gmi_dual_usage()
|
||||||
|
function build_model(mps_filename)
|
||||||
|
model = read_from_file(mps_filename)
|
||||||
|
set_optimizer(model, SCIP.Optimizer)
|
||||||
|
return JumpModel(model)
|
||||||
|
end
|
||||||
|
|
||||||
|
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||||
|
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||||
|
rm(h5_filename, force=true)
|
||||||
|
|
||||||
|
# Run basic collector
|
||||||
|
bc = BasicCollector(write_mps = false, skip_lp = true)
|
||||||
|
bc.collect([mps_filename], build_model)
|
||||||
|
|
||||||
|
# Run dual GMI collector
|
||||||
|
@info "Running dual GMI collector..."
|
||||||
|
collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
|
||||||
|
|
||||||
|
# # Test expert component
|
||||||
|
# solver = LearningSolver(
|
||||||
|
# components = [
|
||||||
|
# ExpertPrimalComponent(action = SetWarmStart()),
|
||||||
|
# ExpertDualGmiComponent(),
|
||||||
|
# ],
|
||||||
|
# skip_lp = true,
|
||||||
|
# )
|
||||||
|
# solver.optimize(mps_filename, build_model)
|
||||||
|
|
||||||
|
# Test kNN component
|
||||||
|
knn = KnnDualGmiComponent(
|
||||||
|
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
|
||||||
|
k = 2,
|
||||||
|
)
|
||||||
|
knn.fit([h5_filename, h5_filename])
|
||||||
|
solver = LearningSolver(
|
||||||
|
components = [
|
||||||
|
ExpertPrimalComponent(action = SetWarmStart()),
|
||||||
|
knn,
|
||||||
|
],
|
||||||
|
skip_lp = true,
|
||||||
|
)
|
||||||
|
solver.optimize(mps_filename, build_model)
|
||||||
|
return
|
||||||
|
end
|
||||||
@@ -16,10 +16,16 @@ FIXTURES = "$BASEDIR/../fixtures"
|
|||||||
include("fixtures.jl")
|
include("fixtures.jl")
|
||||||
|
|
||||||
include("BB/test_bb.jl")
|
include("BB/test_bb.jl")
|
||||||
|
include("components/test_cuts.jl")
|
||||||
|
include("components/test_lazy.jl")
|
||||||
include("Cuts/BlackBox/test_cplex.jl")
|
include("Cuts/BlackBox/test_cplex.jl")
|
||||||
|
include("Cuts/tableau/test_gmi.jl")
|
||||||
|
include("Cuts/tableau/test_gmi_dual.jl")
|
||||||
include("problems/test_setcover.jl")
|
include("problems/test_setcover.jl")
|
||||||
include("test_io.jl")
|
include("problems/test_stab.jl")
|
||||||
|
include("problems/test_tsp.jl")
|
||||||
include("solvers/test_jump.jl")
|
include("solvers/test_jump.jl")
|
||||||
|
include("test_io.jl")
|
||||||
include("test_usage.jl")
|
include("test_usage.jl")
|
||||||
|
|
||||||
function runtests()
|
function runtests()
|
||||||
@@ -27,11 +33,14 @@ function runtests()
|
|||||||
@testset "BB" begin
|
@testset "BB" begin
|
||||||
test_bb()
|
test_bb()
|
||||||
end
|
end
|
||||||
# test_cuts_blackbox_cplex()
|
|
||||||
test_io()
|
test_io()
|
||||||
test_problems_setcover()
|
test_problems_setcover()
|
||||||
|
test_problems_stab()
|
||||||
|
test_problems_tsp()
|
||||||
test_solvers_jump()
|
test_solvers_jump()
|
||||||
test_usage()
|
test_usage()
|
||||||
|
test_cuts()
|
||||||
|
test_lazy()
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|||||||
41
test/src/components/test_cuts.jl
Normal file
41
test/src/components/test_cuts.jl
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using SCIP
|
||||||
|
|
||||||
|
function gen_stab()
|
||||||
|
np = pyimport("numpy")
|
||||||
|
uniform = pyimport("scipy.stats").uniform
|
||||||
|
randint = pyimport("scipy.stats").randint
|
||||||
|
np.random.seed(42)
|
||||||
|
gen = MaxWeightStableSetGenerator(
|
||||||
|
w = uniform(10.0, scale = 1.0),
|
||||||
|
n = randint(low = 50, high = 51),
|
||||||
|
p = uniform(loc = 0.5, scale = 0.0),
|
||||||
|
fix_graph = true,
|
||||||
|
)
|
||||||
|
data = gen.generate(1)
|
||||||
|
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
|
||||||
|
collector = BasicCollector()
|
||||||
|
collector.collect(
|
||||||
|
data_filenames,
|
||||||
|
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||||
|
progress = true,
|
||||||
|
verbose = true,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function test_cuts()
|
||||||
|
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
|
||||||
|
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||||
|
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||||
|
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
|
||||||
|
solver = LearningSolver(components = [comp])
|
||||||
|
solver.fit(data_filenames)
|
||||||
|
model, stats = solver.optimize(
|
||||||
|
data_filenames[1],
|
||||||
|
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||||
|
)
|
||||||
|
@test stats["Cuts: AOT"] > 0
|
||||||
|
end
|
||||||
44
test/src/components/test_lazy.jl
Normal file
44
test/src/components/test_lazy.jl
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using GLPK
|
||||||
|
|
||||||
|
function gen_tsp()
|
||||||
|
np = pyimport("numpy")
|
||||||
|
uniform = pyimport("scipy.stats").uniform
|
||||||
|
randint = pyimport("scipy.stats").randint
|
||||||
|
np.random.seed(42)
|
||||||
|
|
||||||
|
gen = TravelingSalesmanGenerator(
|
||||||
|
x = uniform(loc = 0.0, scale = 1000.0),
|
||||||
|
y = uniform(loc = 0.0, scale = 1000.0),
|
||||||
|
n = randint(low = 20, high = 21),
|
||||||
|
gamma = uniform(loc = 1.0, scale = 0.25),
|
||||||
|
fix_cities = true,
|
||||||
|
round = true,
|
||||||
|
)
|
||||||
|
data = gen.generate(1)
|
||||||
|
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
|
||||||
|
collector = BasicCollector()
|
||||||
|
collector.collect(
|
||||||
|
data_filenames,
|
||||||
|
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||||
|
progress = true,
|
||||||
|
verbose = true,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function test_lazy()
|
||||||
|
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
|
||||||
|
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||||
|
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||||
|
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
|
||||||
|
solver = LearningSolver(components = [comp])
|
||||||
|
solver.fit(data_filenames)
|
||||||
|
model, stats = solver.optimize(
|
||||||
|
data_filenames[1],
|
||||||
|
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||||
|
)
|
||||||
|
@test stats["Lazy Constraints: AOT"] > 0
|
||||||
|
end
|
||||||
@@ -14,5 +14,5 @@ function fixture_setcover_data()
|
|||||||
end
|
end
|
||||||
|
|
||||||
function fixture_setcover_model()
|
function fixture_setcover_model()
|
||||||
return build_setcover_model(fixture_setcover_data())
|
return build_setcover_model_jump(fixture_setcover_data())
|
||||||
end
|
end
|
||||||
|
|||||||
@@ -51,7 +51,7 @@ function test_problems_setcover_model()
|
|||||||
)
|
)
|
||||||
|
|
||||||
h5 = H5File(tempname(), "w")
|
h5 = H5File(tempname(), "w")
|
||||||
model = build_setcover_model(data)
|
model = build_setcover_model_jump(data)
|
||||||
model.extract_after_load(h5)
|
model.extract_after_load(h5)
|
||||||
model.optimize()
|
model.optimize()
|
||||||
model.extract_after_mip(h5)
|
model.extract_after_mip(h5)
|
||||||
|
|||||||
22
test/src/problems/test_stab.jl
Normal file
22
test/src/problems/test_stab.jl
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using PyCall
|
||||||
|
using SCIP
|
||||||
|
|
||||||
|
function test_problems_stab()
|
||||||
|
nx = pyimport("networkx")
|
||||||
|
data = MaxWeightStableSetData(
|
||||||
|
graph = nx.gnp_random_graph(25, 0.5, seed = 42),
|
||||||
|
weights = repeat([1.0], 25),
|
||||||
|
)
|
||||||
|
h5 = H5File(tempname(), "w")
|
||||||
|
model = build_stab_model_jump(data, optimizer = SCIP.Optimizer)
|
||||||
|
model.extract_after_load(h5)
|
||||||
|
model.optimize()
|
||||||
|
model.extract_after_mip(h5)
|
||||||
|
@test h5.get_scalar("mip_obj_value") == -6
|
||||||
|
@test h5.get_scalar("mip_cuts")[1:20] == "[[0,8,11,13],[0,8,13"
|
||||||
|
h5.close()
|
||||||
|
end
|
||||||
22
test/src/problems/test_tsp.jl
Normal file
22
test/src/problems/test_tsp.jl
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using GLPK
|
||||||
|
using JuMP
|
||||||
|
|
||||||
|
function test_problems_tsp()
|
||||||
|
pdist = pyimport("scipy.spatial.distance").pdist
|
||||||
|
squareform = pyimport("scipy.spatial.distance").squareform
|
||||||
|
|
||||||
|
data = TravelingSalesmanData(
|
||||||
|
n_cities = 6,
|
||||||
|
distances = squareform(
|
||||||
|
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
|
||||||
|
model.optimize()
|
||||||
|
@test objective_value(model.inner) == 8.0
|
||||||
|
return
|
||||||
|
end
|
||||||
@@ -4,6 +4,7 @@
|
|||||||
|
|
||||||
using MIPLearn
|
using MIPLearn
|
||||||
using JLD2
|
using JLD2
|
||||||
|
using SparseArrays
|
||||||
|
|
||||||
struct _TestStruct
|
struct _TestStruct
|
||||||
n::Int
|
n::Int
|
||||||
@@ -35,6 +36,8 @@ function test_h5()
|
|||||||
_test_roundtrip_array(h5, [1, 2, 3])
|
_test_roundtrip_array(h5, [1, 2, 3])
|
||||||
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
|
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
|
||||||
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
|
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
|
||||||
|
_test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3]))
|
||||||
|
# _test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3], 4, 4))
|
||||||
@test h5.get_array("unknown-key") === nothing
|
@test h5.get_array("unknown-key") === nothing
|
||||||
h5.close()
|
h5.close()
|
||||||
end
|
end
|
||||||
@@ -79,3 +82,11 @@ function _test_roundtrip_str_array(h5, original)
|
|||||||
@test recovered !== nothing
|
@test recovered !== nothing
|
||||||
@test all(original .== recovered)
|
@test all(original .== recovered)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function _test_roundtrip_sparse(h5, original)
|
||||||
|
h5.put_sparse("key", original)
|
||||||
|
recovered = MIPLearn.convert(SparseMatrixCSC, h5.get_sparse("key"))
|
||||||
|
@test recovered !== nothing
|
||||||
|
@test size(original) == size(recovered)
|
||||||
|
@test all(original .== recovered)
|
||||||
|
end
|
||||||
|
|||||||
@@ -29,13 +29,13 @@ function test_usage()
|
|||||||
|
|
||||||
@debug "Collecting training data..."
|
@debug "Collecting training data..."
|
||||||
bc = BasicCollector()
|
bc = BasicCollector()
|
||||||
bc.collect(data_filenames, build_setcover_model)
|
bc.collect(data_filenames, build_setcover_model_jump)
|
||||||
|
|
||||||
@debug "Training models..."
|
@debug "Training models..."
|
||||||
solver.fit(data_filenames)
|
solver.fit(data_filenames)
|
||||||
|
|
||||||
@debug "Solving model..."
|
@debug "Solving model..."
|
||||||
solver.optimize(data_filenames[1], build_setcover_model)
|
solver.optimize(data_filenames[1], build_setcover_model_jump)
|
||||||
|
|
||||||
@debug "Checking solution..."
|
@debug "Checking solution..."
|
||||||
h5 = H5File(h5_filenames[1])
|
h5 = H5File(h5_filenames[1])
|
||||||
|
|||||||
Reference in New Issue
Block a user