25 Commits
dev ... fs11_01

Author SHA1 Message Date
aa11db99a2 FisSal2011: Adjust constants 2025-10-06 12:52:58 -05:00
a4ff65275e SplitFreeVars: Preserve var order 2025-10-06 12:51:27 -05:00
295e29c351 DualGMI: multiple fixes 2025-10-02 10:10:42 -05:00
67e706d727 FisSal2011: Write H5 2025-08-13 15:33:48 -05:00
407312e129 FisSal2011: Keep only active cuts at the end 2025-08-13 14:44:41 -05:00
e2e69415c1 FisSal2011: Implement faster get/set basis for Gurobi 2025-08-08 22:44:43 -05:00
9713873a34 FisSal2011: Large LP: Add cuts in small batches 2025-08-08 22:08:50 -05:00
e2906a0a7e FisSal2011: Accelerate creation of obj function 2025-08-08 21:49:41 -05:00
3ca5a4fec7 FisSal2011: Small fix 2025-08-08 21:32:11 -05:00
84acd6b72c collect_gmi_FisSal2011: Accelerate appending unique cuts 2025-08-08 21:11:05 -05:00
8f3eb8adc4 FisSal2011: Implement miplearn variant; minor fixes 2025-08-08 20:25:51 -05:00
65a6024c36 assert_cuts_off: Improve performance 2025-08-08 15:46:24 -05:00
bb59362571 compute_tableau: Compute directly in compressed row format 2025-08-08 15:30:01 -05:00
5e2b0c2958 FisSal2011: Improve estimated tableau density 2025-08-08 15:06:15 -05:00
37f3abee42 FisSal2011: Speed up hash calculation 2025-08-08 14:50:07 -05:00
1296182744 compute_tableau: Improve efficiency 2025-08-08 13:49:26 -05:00
4158fccf12 compute_tableau: Reduce memory requirements 2025-08-07 22:09:15 -05:00
97c5813e59 FisSal2011: Change some default args; remove basis_seen 2025-08-07 21:47:30 -05:00
55b0a2bbca AddSlackVariables: Improve performance 2025-08-07 21:42:24 -05:00
b8d836de10 FisSal2011: Implement early termination; improve log 2025-08-04 23:29:59 -05:00
1c44cb4e86 Fix incorrect integer slacks 2025-08-04 23:29:00 -05:00
8edd031bbe FisSal2011: Add multiple variants 2025-08-04 21:00:36 -05:00
0a0d133161 FisSal2011: clean up, improve gap closure on MIPLIB 3 (65.5%) 2025-08-04 16:15:38 -05:00
0b5ec4740e FisSal2011: partial implementation 2025-08-04 15:17:17 -05:00
05e7d1619c Make dual GMI cuts stronger 2025-08-01 09:43:09 -05:00
7 changed files with 1126 additions and 174 deletions

View File

@@ -6,6 +6,7 @@ version = "0.4.2"
[deps] [deps]
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d" Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f" HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b" HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819" JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
@@ -28,6 +29,7 @@ TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
[compat] [compat]
Conda = "1" Conda = "1"
DataStructures = "0.18" DataStructures = "0.18"
Gurobi = "1.7.5"
HDF5 = "0.16" HDF5 = "0.16"
HiGHS = "1" HiGHS = "1"
JLD2 = "0.4" JLD2 = "0.4"
@@ -36,10 +38,10 @@ JuMP = "1"
KLU = "0.4" KLU = "0.4"
MathOptInterface = "1" MathOptInterface = "1"
OrderedCollections = "1" OrderedCollections = "1"
PrecompileTools = "1"
PyCall = "1" PyCall = "1"
Requires = "1" Requires = "1"
SCIP = "0.12"
Statistics = "1" Statistics = "1"
TimerOutputs = "0.5" TimerOutputs = "0.5"
julia = "1" julia = "1"
PrecompileTools = "1"
SCIP = "0.12"

View File

@@ -185,7 +185,7 @@ function collect_gmi(
) )
end end
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4) function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
candidate_rows = [ candidate_rows = [
r for r = 1:length(basis.var_basic) if ( r for r = 1:length(basis.var_basic) if (
(data.var_types[basis.var_basic[r]] != 'C') && (data.var_types[basis.var_basic[r]] != 'C') &&
@@ -199,23 +199,82 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4)
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)] return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
end end
# function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
# @timeit "Initialization" begin
# nrows, ncols = size(tableau.lhs)
# ub = Float64[Inf for _ = 1:nrows]
# lb = Float64[0.999 for _ = 1:nrows]
# tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
# lhs_I = Int[]
# lhs_J = Int[]
# lhs_V = Float64[]
# end
# @timeit "Compute coefficients" begin
# for k = 1:nnz(tableau.lhs)
# i::Int = tableau_I[k]
# j::Int = tableau_J[k]
# v::Float64 = 0.0
# frac_alpha_j = frac(tableau_V[k])
# alpha_j = tableau_V[k]
# beta = frac(tableau.rhs[i])
# if data.var_types[j] == 'C'
# if alpha_j >= 0
# v = alpha_j / beta
# else
# v = -alpha_j / (1 - beta)
# end
# else
# if frac_alpha_j < beta
# v = frac_alpha_j / beta
# else
# v = (1 - frac_alpha_j) / (1 - beta)
# end
# end
# if abs(v) > 1e-8
# push!(lhs_I, i)
# push!(lhs_J, tableau_J[k])
# push!(lhs_V, v)
# end
# end
# end
# @timeit "Convert to ConstraintSet" begin
# lhs = sparse(lhs_I, lhs_J, lhs_V, nrows, ncols)
# cs = ConstraintSet(; lhs, ub, lb)
# end
# return cs
# end
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
nrows, ncols = size(tableau.lhs) @timeit "Initialization" begin
ub = Float64[Inf for _ = 1:nrows] nrows::Int, ncols::Int = size(tableau.lhs)
lb = Float64[0.9999 for _ = 1:nrows] var_types::Vector{Char} = data.var_types
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs) tableau_rhs::Vector{Float64} = tableau.rhs
lhs_I = Int[] tableau_I::Vector{Int}, tableau_J::Vector{Int}, tableau_V::Vector{Float64} = findnz(tableau.lhs)
lhs_J = Int[] end
lhs_V = Float64[]
@timeit "Pre-allocation" begin
cut_ub::Vector{Float64} = fill(Inf, nrows)
cut_lb::Vector{Float64} = fill(0.999, nrows)
nnz_tableau::Int = length(tableau_I)
cut_lhs_I::Vector{Int} = Vector{Int}(undef, nnz_tableau)
cut_lhs_J::Vector{Int} = Vector{Int}(undef, nnz_tableau)
cut_lhs_V::Vector{Float64} = Vector{Float64}(undef, nnz_tableau)
cut_hash::Vector{UInt64} = zeros(UInt64, nrows)
nnz_count::Int = 0
end
@timeit "Compute coefficients" begin @timeit "Compute coefficients" begin
for k = 1:nnz(tableau.lhs) @inbounds for k = 1:nnz_tableau
i::Int = tableau_I[k] i::Int = tableau_I[k]
j::Int = tableau_J[k] j::Int = tableau_J[k]
v::Float64 = 0.0 alpha_j::Float64 = tableau_V[k]
frac_alpha_j = frac(tableau_V[k]) frac_alpha_j::Float64 = alpha_j - floor(alpha_j)
alpha_j = tableau_V[k] beta_i::Float64 = tableau_rhs[i]
beta = frac(tableau.rhs[i]) beta::Float64 = beta_i - floor(beta_i)
if data.var_types[j] == 'C' v::Float64 = 0
# Compute coefficient
if var_types[j] == 'C'
if alpha_j >= 0 if alpha_j >= 0
v = alpha_j / beta v = alpha_j / beta
else else
@@ -228,16 +287,34 @@ function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
v = (1 - frac_alpha_j) / (1 - beta) v = (1 - frac_alpha_j) / (1 - beta)
end end
end end
# Store if significant
if abs(v) > 1e-8 if abs(v) > 1e-8
push!(lhs_I, i) nnz_count += 1
push!(lhs_J, tableau_J[k]) cut_lhs_I[nnz_count] = i
push!(lhs_V, v) cut_lhs_J[nnz_count] = j
cut_lhs_V[nnz_count] = v
cut_hash[i] = hash(j, cut_hash[i])
cut_hash[i] = hash(v, cut_hash[i])
end end
end end
lhs = sparse(lhs_I, lhs_J, lhs_V, nrows, ncols)
end end
return ConstraintSet(; lhs, ub, lb)
@timeit "Resize arrays to actual size" begin
resize!(cut_lhs_I, nnz_count)
resize!(cut_lhs_J, nnz_count)
resize!(cut_lhs_V, nnz_count)
end
# TODO: Build cut in compressed row format instead of converting
@timeit "Convert to ConstraintSet" begin
cut_lhs::SparseMatrixCSC = sparse(cut_lhs_I, cut_lhs_J, cut_lhs_V, nrows, ncols)
cs::ConstraintSet = ConstraintSet(; lhs=cut_lhs, ub=cut_ub, lb=cut_lb, hash=cut_hash)
end
return cs
end end
export compute_gmi, export compute_gmi,
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi

View File

@@ -7,6 +7,7 @@ using JuMP
using HiGHS using HiGHS
using Random using Random
using DataStructures using DataStructures
using Statistics
import ..H5FieldsExtractor import ..H5FieldsExtractor
@@ -25,7 +26,7 @@ function collect_gmi_dual(
mps_filename; mps_filename;
optimizer, optimizer,
max_rounds = 10, max_rounds = 10,
max_cuts_per_round = 500, max_cuts_per_round = 1_000_000,
time_limit = 3_600, time_limit = 3_600,
) )
reset_timer!() reset_timer!()
@@ -263,6 +264,689 @@ function collect_gmi_dual(
) )
end end
function collect_gmi_FisSal2011(
mps_filename;
interval_print_sec = 1,
max_cuts_per_round = 1_000,
max_pool_size_mb = 1024,
optimizer,
silent_solver = true,
time_limit = 300,
variant = :miplearn,
verify_cuts = true,
)
variant in [:subg, :hybr, :fast, :faster, :miplearn] || error("unknown variant: $variant")
if variant == :subg
max_rounds = 10_000
interval_large_lp = 10_000
interval_read_tableau = 10
elseif variant == :hybr
max_rounds = 10_000
interval_large_lp = 1_000
interval_read_tableau = 10
elseif variant == :fast
max_rounds = 1_000
interval_large_lp = 100
interval_read_tableau = 1
elseif variant == :faster
max_rounds = 500
interval_large_lp = 50
interval_read_tableau = 1
elseif variant == :miplearn
max_rounds = 1_000_000
interval_large_lp = 100
interval_read_tableau = 1
end
gapcl_best_patience = 2 * interval_large_lp + 5
reset_timer!()
initial_time = time()
@timeit "Read H5" begin
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename, "r")
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
obj_mip = h5.get_scalar("mip_obj_value")
h5.file.close()
end
@timeit "Initialize" begin
count_backtrack = 0
count_deterioration = 0
gapcl_best = 0
gapcl_best_history = CircularBuffer{Float64}(gapcl_best_patience)
gapcl_curr = 0
last_print_time = 0
multipliers_best = Float64[]
multipliers_curr = Float64[]
obj_best = nothing
obj_curr = nothing
obj_hist = CircularBuffer{Float64}(100)
obj_initial = nothing
pool = nothing
pool_cut_age = nothing
pool_cut_hashes = Set{UInt64}()
pool_size_mb = 0
tableau_density::Float32 = 0.05
basis_cache = nothing
λ, Δ = 0, 0
μ = 10
basis_vars_to_id = Dict()
basis_id_to_vars = Dict{Int, Vector{Int}}()
basis_id_to_sizes = Dict{Int, Vector{Int}}()
next_basis_id = 1
cut_basis_id = Int[]
cut_row = Int[]
end
gapcl(v) = 100 * (v - obj_initial) / (obj_mip - obj_initial)
@timeit "Read problem" begin
model = read_from_file(mps_filename)
set_optimizer(model, optimizer)
end
@timeit "Convert model to standard form" begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
for (var_idx, var_type) in enumerate(data.var_types)
if var_type in ['B', 'I']
assert_int(sol_opt[var_idx])
end
end
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
if silent_solver
set_silent(model_s)
end
vars_s = all_variables(model_s)
orig_obj_s = objective_function(model_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
for (var_idx, var_type) in enumerate(data_s.var_types)
if var_type in ['B', 'I']
assert_int(sol_opt_s[var_idx])
end
end
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
@info "Standard form model has $(length(data_s.var_lb)) vars, $(length(data_s.constr_lb)) constrs"
for round = 1:max_rounds
log_prefix = ' '
log_should_print = false
is_last_iteration = false
if round == max_rounds
is_last_iteration = true
end
elapsed_time = time() - initial_time
if elapsed_time > time_limit
@info "Time limit exceeded. Stopping after current iteration."
is_last_iteration = true
end
if round > 1
@timeit "Build Lagrangian term" begin
@timeit "mul" begin
active_idx = findall(multipliers_curr .> 1e-6)
v = sparse(pool.lhs[:, active_idx] * multipliers_curr[active_idx])
end
@timeit "dot" begin
lagr_term = AffExpr(dot(multipliers_curr, pool.lb))
end
@timeit "add_to_expression!" begin
for offset in 1:nnz(v)
var_idx = v.nzind[offset]
add_to_expression!(
lagr_term,
vars_s[var_idx],
- v.nzval[offset],
)
end
end
end
@timeit "Update objective" begin
set_objective_function(
model_s,
orig_obj_s + lagr_term,
)
end
end
@timeit "Optimize LP (lagrangian)" begin
basis_cache === nothing || set_basis(model_s, basis_cache)
set_silent(model_s)
optimize!(model_s)
basis_cache = get_basis(model_s)
status = termination_status(model_s)
if status == MOI.DUAL_INFEASIBLE
@warn "LP is unbounded (dual infeasible). Resetting to best known multipliers."
copy!(multipliers_curr, multipliers_best)
obj_curr = obj_best
continue
elseif status != MOI.OPTIMAL
error("Non-optimal termination status: $status")
end
sol_frac = get_x(model_s)
obj_curr = objective_value(model_s)
end
@timeit "Update history and μ" begin
push!(obj_hist, obj_curr)
if obj_best === nothing || obj_curr > obj_best
log_prefix = '*'
obj_best = obj_curr
copy!(multipliers_best, multipliers_curr)
end
if round == 1
obj_initial = obj_curr
end
gapcl_curr = gapcl(obj_curr)
gapcl_best = gapcl(obj_best)
push!(gapcl_best_history, gapcl_best)
if variant in [:subg, :hybr]
Δ = obj_mip - obj_best
if obj_curr < obj_best - Δ
count_deterioration += 1
else
count_deterioration = 0
end
if count_deterioration >= 10
μ *= 0.5
copy!(multipliers_curr, multipliers_best)
count_deterioration = 0
count_backtrack += 1
elseif length(obj_hist) >= 100
obj_hist_avg = mean(obj_hist)
improv = obj_best - obj_hist[1]
if improv < 0.01 * Δ
if obj_best - obj_hist_avg < 0.001 * Δ
μ = 10 * μ
elseif obj_best - obj_hist_avg < 0.01 * Δ
μ = 2 * μ
else
μ = 0.5 * μ
end
end
end
elseif variant in [:fast, :faster, :miplearn]
μ = 0.01
else
error("not implemented")
end
end
if mod(round - 1, interval_read_tableau) == 0
@timeit "Get basis" begin
basis = get_basis(model_s)
end
@timeit "Select tableau rows" begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
@timeit "Compute tableau rows" begin
tableau = compute_tableau(data_s, basis, x = sol_frac, rows = selected_rows, estimated_density=tableau_density * 1.05)
tableau_density = nnz(tableau.lhs) / length(tableau.lhs)
assert_eq(tableau.lhs * sol_frac, tableau.rhs, atol=1e-3)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs, atol=1e-3)
end
@timeit "Compute GMI cuts" begin
cuts_s = compute_gmi(data_s, tableau)
end
@timeit "Check cut validity" begin
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
ncuts = length(cuts_s.lb)
end
@timeit "Add new cuts to the pool" begin
@timeit "Compute cut hashses" begin
unique_indices = Int[]
for i in 1:ncuts
cut_hash = cuts_s.hash[i]
if !(cut_hash in pool_cut_hashes)
push!(pool_cut_hashes, cut_hash)
push!(unique_indices, i)
end
end
end
@timeit "Append unique cuts" begin
@timeit "Track basis" begin
vb = basis.var_basic
vn = basis.var_nonbasic
cb = basis.constr_basic
cn = basis.constr_nonbasic
basis_vars = [vb; vn; cb; cn]
basis_sizes = [length(vb), length(vn), length(cb), length(cn)]
if basis_vars keys(basis_vars_to_id)
basis_id = next_basis_id
basis_vars_to_id[basis_vars] = basis_id
basis_id_to_vars[basis_id] = basis_vars
basis_id_to_sizes[basis_id] = basis_sizes
next_basis_id += 1
else
basis_id = basis_vars_to_id[basis_vars]
end
end
if round == 1
pool = ConstraintSet(
lhs = sparse(cuts_s.lhs[unique_indices, :]'),
lb = cuts_s.lb[unique_indices],
ub = cuts_s.ub[unique_indices],
hash = cuts_s.hash[unique_indices],
)
ncuts_unique = length(unique_indices)
multipliers_curr = zeros(ncuts_unique)
multipliers_best = zeros(ncuts_unique)
pool_cut_age = zeros(ncuts_unique)
for i in unique_indices
push!(cut_basis_id, basis_id)
push!(cut_row, selected_rows[i])
end
else
if !isempty(unique_indices)
@timeit "Append LHS" begin
# Transpose cuts matrix for better performance
new_cuts_lhs = sparse(cuts_s.lhs[unique_indices, :]')
# Resize existing matrix in-place to accommodate new columns
old_cols = pool.lhs.n
new_cols = new_cuts_lhs.n
total_cols = old_cols + new_cols
resize!(pool.lhs.colptr, total_cols + 1)
# Append new column pointers with offset
old_nnz = nnz(pool.lhs)
for i in 1:new_cols
pool.lhs.colptr[old_cols + i + 1] = old_nnz + new_cuts_lhs.colptr[i + 1]
end
# Expand rowval and nzval arrays
append!(pool.lhs.rowval, new_cuts_lhs.rowval)
append!(pool.lhs.nzval, new_cuts_lhs.nzval)
# Update matrix dimensions
pool.lhs = SparseMatrixCSC(pool.lhs.m, total_cols, pool.lhs.colptr, pool.lhs.rowval, pool.lhs.nzval)
end
@timeit "Append others" begin
ncuts_unique = length(unique_indices)
append!(pool.lb, cuts_s.lb[unique_indices])
append!(pool.ub, cuts_s.ub[unique_indices])
append!(pool.hash, cuts_s.hash[unique_indices])
append!(multipliers_curr, zeros(ncuts_unique))
append!(multipliers_best, zeros(ncuts_unique))
append!(pool_cut_age, zeros(ncuts_unique))
for i in unique_indices
push!(cut_basis_id, basis_id)
push!(cut_row, selected_rows[i])
end
end
end
end
end
end
@timeit "Prune the pool" begin
pool_size_mb = Base.summarysize(pool) / 1024^2
while pool_size_mb >= max_pool_size_mb
@timeit "Identify cuts to remove" begin
scores = collect(zip(multipliers_best .> 1e-6, -pool_cut_age))
σ = sortperm(scores, rev=true)
pool_size = length(pool.ub)
n_keep = Int(floor(pool_size * 0.8))
idx_keep = σ[1:n_keep]
idx_remove = σ[(n_keep+1):end]
positive_multipliers_dropped = sum(multipliers_best[idx_remove] .> 1e-6)
@info "Dropping $(length(idx_remove)) cuts ($(positive_multipliers_dropped) with multipliers_best)"
end
@timeit "Update cut hashes" begin
for idx in idx_remove
cut_hash = pool.hash[idx]
delete!(pool_cut_hashes, cut_hash)
end
end
@timeit "Update cut pool" begin
pool.lhs = pool.lhs[:, idx_keep]
pool.ub = pool.ub[idx_keep]
pool.lb = pool.lb[idx_keep]
pool.hash = pool.hash[idx_keep]
multipliers_curr = multipliers_curr[idx_keep]
multipliers_best = multipliers_best[idx_keep]
pool_cut_age = pool_cut_age[idx_keep]
cut_basis_id = cut_basis_id[idx_keep]
cut_row = cut_row[idx_keep]
end
@timeit "Update known bases" begin
used_basis_ids = Set(cut_basis_id)
for basis_id in collect(keys(basis_id_to_vars))
if basis_id used_basis_ids
basis_vars = basis_id_to_vars[basis_id]
delete!(basis_vars_to_id, basis_vars)
delete!(basis_id_to_vars, basis_id)
delete!(basis_id_to_sizes, basis_id)
end
end
end
pool_size_mb = Base.summarysize(pool) / 1024^2
end
end
end
if mod(round - 1, interval_large_lp) == 0 || is_last_iteration
log_should_print = true
@timeit "Update multipliers (large LP)" begin
selected_idx = []
selected_contrs = []
while true
@timeit "Optimize LP (extended)" begin
set_silent(model_s)
set_objective_function(model_s, orig_obj_s)
optimize!(model_s)
status = termination_status(model_s)
if status != MOI.OPTIMAL
error("Non-optimal termination status: $status")
end
obj_curr = objective_value(model_s)
sol_frac = get_x(model_s)
end
@timeit "Computing cut violations" begin
violations = pool.lb - pool.lhs' * sol_frac
end
@timeit "Sorting cut violations" begin
σ = sortperm(violations, rev=true)
end
if violations[σ[1]] <= 1e-6
break
end
@timeit "Add constraints to the model" begin
ncuts = min(max(1, sum(violations .> 1e-6) ÷ 10), length(σ))
for i in 1:ncuts
if violations[σ[i]] <= 1e-6
break
end
cut_lhs = pool.lhs[:, σ[i]]
cut_lhs_value = 0.0
cut_lb = pool.lb[σ[i]]
cut_expr = AffExpr()
for offset in 1:nnz(cut_lhs)
var_idx = cut_lhs.nzind[offset]
add_to_expression!(
cut_expr,
vars_s[var_idx],
cut_lhs.nzval[offset],
)
cut_lhs_value += sol_frac[var_idx] * cut_lhs.nzval[offset]
end
cut_constr = @constraint(model_s, cut_expr >= cut_lb)
push!(selected_idx, σ[i])
push!(selected_contrs, cut_constr)
end
end
end
@timeit "Find dual values for all selected cuts" begin
multipliers_curr .= 0
pool_cut_age .+= 1
for (offset, idx) in enumerate(selected_idx)
multipliers_curr[idx] = -shadow_price(selected_contrs[offset])
if multipliers_curr[idx] > 1e-5
pool_cut_age[idx] = 0
end
end
end
@timeit "Update best" begin
if obj_curr > obj_best
log_prefix = '*'
obj_best = obj_curr
copy!(multipliers_best, multipliers_curr)
end
gapcl_curr = gapcl(obj_curr)
gapcl_best = gapcl(obj_best)
end
@timeit "Delete all cut constraints" begin
delete.(model_s, selected_contrs)
end
end
else
@timeit "Update multipliers (subgradient)" begin
subgrad = (pool.lb' - (sol_frac' * pool.lhs))'
subgrad_norm_sq = norm(subgrad)^2
if subgrad_norm_sq < 1e-10
λ = 0
else
λ = μ * (obj_mip - obj_curr) / subgrad_norm_sq
end
multipliers_curr = max.(0, multipliers_curr .+ λ * subgrad)
end
end
if round == 1
@printf(
" %8s %8s %10s %9s %9s %9s %9s %4s %8s %8s %8s\n",
"time",
"round",
"obj",
"cl_curr",
"cl_best",
"pool_cuts",
"pool_mb",
"bktk",
"Δ",
"μ",
"λ",
)
end
if time() - last_print_time > interval_print_sec
log_should_print = true
end
if is_last_iteration
log_should_print = true
end
if log_should_print
last_print_time = time()
@printf(
"%c %8.2f %8d %10.3e %9.2e %9.2e %9d %9.2f %4d %8.2e %8.2e %8.2e\n",
log_prefix,
time() - initial_time,
round,
obj_curr,
gapcl_curr,
gapcl_best,
length(pool.ub),
pool_size_mb,
count_backtrack,
Δ,
μ,
λ,
)
end
push!(gapcl_best_history, gapcl_best)
if length(gapcl_best_history) >= gapcl_best_patience
if gapcl_best <= gapcl_best_history[1]
@info "No gap closure improvement. Stopping."
break
end
end
if is_last_iteration
break
end
end
@info "Best gap closure: $(gapcl_best)"
@timeit "Keep only active cuts" begin
positive_idx = findall(multipliers_best .> 1e-6)
if length(positive_idx) == 0 && gapcl_best > 1e-6
error("gap closure with zero cuts")
end
@timeit "Clean up cut pool" begin
pool.lhs = pool.lhs[:, positive_idx]
pool.lb = pool.lb[positive_idx]
pool.ub = pool.ub[positive_idx]
pool.hash = pool.hash[positive_idx]
multipliers_best = multipliers_best[positive_idx]
multipliers_curr = multipliers_curr[positive_idx]
cut_basis_id = cut_basis_id[positive_idx]
cut_row = cut_row[positive_idx]
end
@timeit "Clean up known bases" begin
used_basis_ids = Set(cut_basis_id)
for basis_id in collect(keys(basis_id_to_vars))
if basis_id used_basis_ids
basis_vars = basis_id_to_vars[basis_id]
delete!(basis_vars_to_id, basis_vars)
delete!(basis_id_to_vars, basis_id)
delete!(basis_id_to_sizes, basis_id)
end
end
end
@info "Keeping $(length(positive_idx)) cuts from $(length(used_basis_ids)) unique bases"
end
to = TimerOutputs.get_defaulttimer()
stats_time = TimerOutputs.tottime(to) / 1e9
print_timer()
if length(positive_idx) > 0
@timeit "Write cuts to H5" begin
if !isempty(cut_basis_id)
@timeit "Convert IDs to offsets" begin
id_to_offset = Dict{Int, Int}()
gmi_basis_vars = []
gmi_basis_sizes = []
for (offset, basis_id) in enumerate(sort(collect(keys(basis_id_to_vars))))
id_to_offset[basis_id] = offset
push!(gmi_basis_vars, basis_id_to_vars[basis_id])
push!(gmi_basis_sizes, basis_id_to_sizes[basis_id])
end
gmi_cut_basis = [id_to_offset[basis_id] for basis_id in cut_basis_id]
gmi_cut_row = cut_row
end
@timeit "Convert to matrices" begin
gmi_basis_vars_matrix = hcat(gmi_basis_vars...)'
gmi_basis_sizes_matrix = hcat(gmi_basis_sizes...)'
end
@timeit "Write H5" begin
h5 = H5File(h5_filename, "r+")
h5.put_array("gmi_basis_vars", gmi_basis_vars_matrix)
h5.put_array("gmi_basis_sizes", gmi_basis_sizes_matrix)
h5.put_array("gmi_cut_basis", gmi_cut_basis)
h5.put_array("gmi_cut_row", gmi_cut_row)
h5.file.close()
end
end
end
if verify_cuts
@timeit "Verify cuts in current model" begin
@info "Verifying cuts in current standard form model using pool..."
if !isempty(cut_basis_id)
@info "Adding $(length(pool.lb)) cuts from pool to current model"
pool.lhs = sparse(pool.lhs')
constrs = build_constraints(model_s, pool)
add_constraint.(model_s, constrs)
set_objective_function(model_s, orig_obj_s)
optimize!(model_s)
status = termination_status(model_s)
if status != MOI.OPTIMAL
error("Non-optimal termination status: $status")
end
obj_verify_s = objective_value(model_s)
gapcl_verify_s = gapcl(obj_verify_s)
@show gapcl_verify_s
@show gapcl_best
if abs(gapcl_best - gapcl_verify_s) > 0.01
error("Gap closures differ: $(gapcl_best)$(gapcl_verify_s)")
end
@info "Current model gap closure matches: $(gapcl_best)$(gapcl_verify_s)"
else
@warn "No cuts in pool to verify"
end
end
@timeit "Verify stored cuts" begin
@info "Verifying stored cuts..."
model_verify = read_from_file(mps_filename)
set_optimizer(model_verify, optimizer)
verification_cuts = _dualgmi_generate([h5_filename], model_verify; test_h5=h5_filename)
constrs = build_constraints(model_verify, verification_cuts)
add_constraint.(model_verify, constrs)
relax_integrality(model_verify)
optimize!(model_verify)
status = termination_status(model_verify)
if status != MOI.OPTIMAL
error("Non-optimal termination status: $status")
end
obj_verify = objective_value(model_verify)
gapcl_verify = gapcl(obj_verify)
@show gapcl_verify
@show gapcl_best
if abs(gapcl_best - gapcl_verify) > 0.01
error("Gap closures differ: $(gapcl_best)$(gapcl_verify)")
end
@info "Gap closure matches gapcl_best: $(gapcl_best)$(gapcl_verify)"
end
end
end
return OrderedDict(
"gapcl_best" => gapcl_best,
"gapcl_curr" => gapcl_curr,
"instance" => mps_filename,
"obj_final" => obj_curr,
"obj_initial" => obj_initial,
"obj_mip" => obj_mip,
"pool_size_mb" => pool_size_mb,
"pool_total" => length(pool.lb),
"time" => stats_time,
)
end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet) function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model) vars = all_variables(model)
nrows, ncols = size(cs.lhs) nrows, ncols = size(cs.lhs)
@@ -371,13 +1055,34 @@ function _dualgmi_compress_h5(h5_filename)
h5.file.close() h5.file.close()
end end
function _dualgmi_generate(train_h5, model) function _dualgmi_generate(train_h5, model; test_h5=nothing)
@timeit "Read problem data" begin @timeit "Read problem data" begin
data = ProblemData(model) data = ProblemData(model)
end end
@timeit "Convert to standard form" begin @timeit "Convert to standard form" begin
data_s, transforms = convert_to_standard_form(data) data_s, transforms = convert_to_standard_form(data)
end end
@timeit "Read optimal solution from test H5" begin
sol_opt_dict = nothing
sol_opt = nothing
sol_opt_s = nothing
if test_h5 !== nothing
try
h5 = H5File(test_h5, "r")
var_names = h5.get_array("static_var_names")
var_values = h5.get_array("mip_var_values")
h5.close()
if var_names !== nothing && var_values !== nothing
sol_opt_dict = Dict(zip(var_names, convert(Array{Float64}, var_values)))
sol_opt = [sol_opt_dict[n] for n in data.var_names]
sol_opt_s = forward(transforms, sol_opt)
@info "Loaded optimal solution for cut validation"
end
catch e
@warn "Could not read optimal solution from test H5 file: $e"
end
end
end
@timeit "Collect cuts from H5 files" begin @timeit "Collect cuts from H5 files" begin
basis_vars_to_basis_offset = Dict() basis_vars_to_basis_offset = Dict()
combined_basis_sizes = nothing combined_basis_sizes = nothing
@@ -446,6 +1151,10 @@ function _dualgmi_generate(train_h5, model)
tableau = compute_tableau(data_s, current_basis; rows=collect(rows)) tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
cuts_s = compute_gmi(data_s, tableau) cuts_s = compute_gmi(data_s, tableau)
cuts = backwards(transforms, cuts_s) cuts = backwards(transforms, cuts_s)
if sol_opt_s !== nothing && sol_opt !== nothing
assert_does_not_cut_off(cuts_s, sol_opt_s)
assert_does_not_cut_off(cuts, sol_opt)
end
if all_cuts === nothing if all_cuts === nothing
all_cuts = cuts all_cuts = cuts
else else
@@ -576,5 +1285,5 @@ function __init_gmi_dual__()
copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy) copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy)
end end
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent, collect_gmi_FisSal2011

View File

@@ -27,25 +27,26 @@ function assert_eq(a, b; atol = 1e-4)
end end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6) function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
vals = cuts.lhs * x
for i = 1:length(cuts.lb) for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x if (vals[i] <= cuts.ub[i] - tol) && (vals[i] >= cuts.lb[i] + tol)
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol) throw(ErrorException("inequality $i fails to cut off fractional solution: $(cuts.lb[i]) <= $(vals[i]) <= $(cuts.ub[i])"))
throw(ErrorException("inequality fails to cut off fractional solution"))
end end
end end
end end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6) function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
vals = cuts.lhs * x
for i = 1:length(cuts.lb) for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x if (vals[i] >= cuts.ub[i]) || (vals[i] <= cuts.lb[i])
ub = cuts.ub[i] throw(ErrorException("inequality $i cuts off integer solution: $(cuts.lb[i]) <= $(vals[i]) <= $(cuts.ub[i])"))
lb = cuts.lb[i]
if (val >= ub) || (val <= lb)
throw(
ErrorException(
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
),
)
end end
end end
end end
function assert_int(x::Float64, tol=1e-5)
fx = frac(x)
if min(fx, 1 - fx) >= tol
throw(ErrorException("Number must be integer: $x"))
end
end

View File

@@ -18,10 +18,10 @@ Base.@kwdef mutable struct ProblemData
end end
Base.@kwdef mutable struct Tableau Base.@kwdef mutable struct Tableau
obj::Any obj::Vector{Float64}
lhs::Any lhs::SparseMatrixCSC
rhs::Any rhs::Vector{Float64}
z::Any z::Float64
end end
Base.@kwdef mutable struct Basis Base.@kwdef mutable struct Basis
@@ -35,6 +35,7 @@ Base.@kwdef mutable struct ConstraintSet
lhs::SparseMatrixCSC lhs::SparseMatrixCSC
ub::Vector{Float64} ub::Vector{Float64}
lb::Vector{Float64} lb::Vector{Float64}
hash::Union{Nothing,Vector{UInt64}} = nothing
end end
export ProblemData, Tableau, Basis, ConstraintSet export ProblemData, Tableau, Basis, ConstraintSet

View File

@@ -4,48 +4,161 @@
using KLU using KLU
using TimerOutputs using TimerOutputs
using Gurobi
function get_basis(model::JuMP.Model)::Basis function get_basis(model::JuMP.Model)::Basis
var_basic = Int[] if isa(unsafe_backend(model), Gurobi.Optimizer)
var_nonbasic = Int[] return get_basis_gurobi(model)
constr_basic = Int[]
constr_nonbasic = Int[]
# Variables
for (i, var) in enumerate(all_variables(model))
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
if bstatus == MOI.BASIC
push!(var_basic, i)
elseif bstatus == MOI.NONBASIC_AT_LOWER
push!(var_nonbasic, i)
else
error("Unknown basis status: $bstatus")
end
end end
# Constraints @timeit "Initialization" begin
constr_index = 1 var_basic = Int[]
for (ftype, stype) in list_of_constraint_types(model) var_nonbasic = Int[]
for constr in all_constraints(model, ftype, stype) constr_basic = Int[]
if ftype == VariableRef constr_nonbasic = Int[]
# nop nvars = num_variables(model)
elseif ftype == AffExpr sizehint!(var_basic, nvars)
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr) sizehint!(var_nonbasic, nvars)
if bstatus == MOI.BASIC end
push!(constr_basic, constr_index)
elseif bstatus == MOI.NONBASIC @timeit "Query variables" begin
push!(constr_nonbasic, constr_index) for (i, var) in enumerate(all_variables(model))
else bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
error("Unknown basis status: $bstatus") if bstatus == MOI.BASIC
end push!(var_basic, i)
constr_index += 1 elseif bstatus == MOI.NONBASIC_AT_LOWER
push!(var_nonbasic, i)
else else
error("Unsupported constraint type: ($ftype, $stype)") error("Unknown basis status: $bstatus")
end end
end end
end end
return Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic) @timeit "Query constraints" begin
constr_index = 1
for (ftype, stype) in list_of_constraint_types(model)
for constr in all_constraints(model, ftype, stype)
if ftype == VariableRef
# nop
elseif ftype == AffExpr
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
if bstatus == MOI.BASIC
push!(constr_basic, constr_index)
elseif bstatus == MOI.NONBASIC
push!(constr_nonbasic, constr_index)
else
error("Unknown basis status: $bstatus")
end
constr_index += 1
else
error("Unsupported constraint type: ($ftype, $stype)")
end
end
end
end
@timeit "Build basis struct" begin
basis = Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
end
return basis
end
function set_basis(model::JuMP.Model, basis::Basis)
if isa(unsafe_backend(model), Gurobi.Optimizer)
# NOP
return
end
@timeit "Initialization" begin
nvars = num_variables(model)
gurobi_model = unsafe_backend(model).inner
end
@timeit "Set variable basis" begin
var_basis_statuses = Vector{Cint}(undef, nvars)
fill!(var_basis_statuses, -1) # Default to GRB_NONBASIC_LOWER
for var_idx in basis.var_basic
var_basis_statuses[var_idx] = 0 # GRB_BASIC
end
ret = GRBsetintattrarray(gurobi_model, "VBasis", 0, nvars, var_basis_statuses)
if ret != 0
error("Failed to set variable basis statuses in Gurobi: error code $ret")
end
end
@timeit "Set constraint basis" begin
nconstr = num_constraints(model, AffExpr, MOI.EqualTo{Float64})
constr_basis_statuses = Vector{Cint}(undef, nconstr)
fill!(constr_basis_statuses, -1) # Default to GRB_NONBASIC
for constr_idx in basis.constr_basic
constr_basis_statuses[constr_idx] = 0 # GRB_BASIC
end
ret = GRBsetintattrarray(gurobi_model, "CBasis", 0, nconstr, constr_basis_statuses)
if ret != 0
error("Failed to set constraint basis statuses in Gurobi: error code $ret")
end
end
return nothing
end
function get_basis_gurobi(model::JuMP.Model)::Basis
@timeit "Initialization" begin
var_basic = Int[]
var_nonbasic = Int[]
constr_basic = Int[]
constr_nonbasic = Int[]
nvars = num_variables(model)
sizehint!(var_basic, nvars)
sizehint!(var_nonbasic, nvars)
gurobi_model = unsafe_backend(model).inner
end
@timeit "Query variables" begin
var_basis_statuses = Vector{Cint}(undef, nvars)
ret = GRBgetintattrarray(gurobi_model, "VBasis", 0, nvars, var_basis_statuses)
if ret != 0
error("Failed to get variable basis statuses from Gurobi: error code $ret")
end
for i in 1:nvars
if var_basis_statuses[i] == 0 # GRB_BASIC
push!(var_basic, i)
elseif var_basis_statuses[i] == -1 # GRB_NONBASIC_LOWER
push!(var_nonbasic, i)
else
error("Unknown variable basis status: $(var_basis_statuses[i])")
end
end
end
@timeit "Query constraints" begin
nconstr = num_constraints(model, AffExpr, MOI.EqualTo{Float64})
constr_basis_statuses = Vector{Cint}(undef, nconstr)
ret = GRBgetintattrarray(gurobi_model, "CBasis", 0, nconstr, constr_basis_statuses)
if ret != 0
error("Failed to get constraint basis statuses from Gurobi: error code $ret")
end
for i in 1:nconstr
if constr_basis_statuses[i] == 0 # GRB_BASIC
push!(constr_basic, i)
elseif constr_basis_statuses[i] == -1 # GRB_NONBASIC
push!(constr_nonbasic, i)
else
error("Unknown constraint basis status: $(constr_basis_statuses[i])")
end
end
end
@timeit "Build basis struct" begin
basis = Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
end
return basis
end end
function get_x(model::JuMP.Model) function get_x(model::JuMP.Model)
@@ -58,7 +171,12 @@ function compute_tableau(
x::Union{Nothing,Vector{Float64}} = nothing, x::Union{Nothing,Vector{Float64}} = nothing,
rows::Union{Vector{Int},Nothing} = nothing, rows::Union{Vector{Int},Nothing} = nothing,
tol = 1e-8, tol = 1e-8,
estimated_density = 0.10,
)::Tableau )::Tableau
if isnan(estimated_density) || estimated_density <= 0
estimated_density = 0.10
end
@timeit "Split data" begin @timeit "Split data" begin
nrows, ncols = size(data.constr_lhs) nrows, ncols = size(data.constr_lhs)
lhs_slacks = sparse(I, nrows, nrows) lhs_slacks = sparse(I, nrows, nrows)
@@ -73,35 +191,71 @@ function compute_tableau(
factor = klu(sparse(lhs_b')) factor = klu(sparse(lhs_b'))
end end
@timeit "Compute tableau" begin @timeit "Initialize arrays" begin
@timeit "Initialize" begin num_rows = length(rows)
tableau_rhs = zeros(length(rows)) tableau_rhs::Array{Float64} = zeros(num_rows)
tableau_lhs = zeros(length(rows), ncols) tableau_rowptr::Array{Int} = zeros(Int, num_rows + 1)
end tableau_colval::Array{Int} = Int[]
for k in eachindex(1:length(rows)) tableau_nzval::Array{Float64} = Float64[]
@timeit "Prepare inputs" begin estimated_nnz::Int = round(num_rows * ncols * estimated_density)
i = rows[k] sizehint!(tableau_colval, estimated_nnz)
e = zeros(nrows) sizehint!(tableau_nzval, estimated_nnz)
e[i] = 1.0 e::Array{Float64} = zeros(nrows)
end sol::Array{Float64} = zeros(nrows)
tableau_row::Array{Float64} = zeros(ncols)
end
A = data.constr_lhs'
b = data.constr_ub
tableau_rowptr[1] = 1
@timeit "Process rows" begin
for k in eachindex(rows)
@timeit "Solve" begin @timeit "Solve" begin
sol = factor \ e fill!(e, 0.0)
e[rows[k]] = 1.0
ldiv!(sol, factor, e)
end end
@timeit "Multiply" begin @timeit "Compute row" begin
tableau_lhs[k, :] = sol' * data.constr_lhs mul!(tableau_row, A, sol)
tableau_rhs[k] = sol' * data.constr_ub tableau_rhs[k] = dot(sol, b)
end end
needed_space = length(tableau_colval) + ncols
if needed_space > estimated_nnz
@timeit "Grow arrays" begin
estimated_nnz *= 2
sizehint!(tableau_colval, estimated_nnz)
sizehint!(tableau_nzval, estimated_nnz)
end
end
@timeit "Collect nonzeros for row" begin
for j in 1:ncols
val = tableau_row[j]
if abs(val) > tol
push!(tableau_colval, j)
push!(tableau_nzval, val)
end
end
end
tableau_rowptr[k + 1] = length(tableau_colval) + 1
end end
@timeit "Sparsify" begin end
tableau_lhs[abs.(tableau_lhs) .<= tol] .= 0
tableau_lhs = sparse(tableau_lhs) @timeit "Shrink arrays" begin
end sizehint!(tableau_colval, length(tableau_colval))
sizehint!(tableau_nzval, length(tableau_nzval))
end
@timeit "Build sparse matrix" begin
tableau_lhs_transposed = SparseMatrixCSC(ncols, num_rows, tableau_rowptr, tableau_colval, tableau_nzval)
tableau_lhs = transpose(tableau_lhs_transposed)
end end
@timeit "Compute tableau objective row" begin @timeit "Compute tableau objective row" begin
sol = factor \ obj_b sol = factor \ obj_b
tableau_obj = -data.obj' + sol' * data.constr_lhs tableau_obj = -data.obj' + sol' * data.constr_lhs
tableau_obj[abs.(tableau_obj).<tol] .= 0 tableau_obj[abs.(tableau_obj).<tol] .= 0
tableau_obj = Array(tableau_obj')
end end
# Compute z if solution is provided # Compute z if solution is provided
@@ -113,4 +267,4 @@ function compute_tableau(
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z) return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
end end
export get_basis, get_x, compute_tableau export get_basis, get_basis_gurobi, set_basis, get_x, compute_tableau

View File

@@ -96,46 +96,70 @@ Base.@kwdef mutable struct AddSlackVariables <: Transform
end end
function forward!(t::AddSlackVariables, data::ProblemData) function forward!(t::AddSlackVariables, data::ProblemData)
nrows, ncols = size(data.constr_lhs) @timeit "Identify constraint type" begin
isequality = abs.(data.constr_ub .- data.constr_lb) .< 1e-6 nrows, ncols = size(data.constr_lhs)
eq = [i for i = 1:nrows if isequality[i]] isequality = abs.(data.constr_ub .- data.constr_lb) .< 1e-6
ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]] eq = [i for i = 1:nrows if isequality[i]]
le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]] ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]]
EQ, GE, LE = length(eq), length(ge), length(le) le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]]
EQ, GE, LE = length(eq), length(ge), length(le)
t.M1 = [ end
I spzeros(ncols, GE + LE) @timeit "Identify slack type" begin
data.constr_lhs[ge, :] spzeros(GE, GE + LE) constr_lhs_t = sparse(data.constr_lhs')
-data.constr_lhs[le, :] spzeros(LE, GE + LE) function is_integral(row_idx, rhs)
] rhs_is_integer = abs(rhs - round(rhs)) <= 1e-6
t.M2 = [ cols, coeffs = findnz(constr_lhs_t[:, row_idx])[1:2]
zeros(ncols) vars_are_integer = all(j -> data.var_types[j] ['I', 'B'], cols)
data.constr_lb[ge] coeffs_are_integer = all(v -> abs(v - round(v)) <= 1e-6, coeffs)
-data.constr_ub[le] return rhs_is_integer && vars_are_integer && coeffs_are_integer
] end
t.ncols_orig = ncols slack_types = [
t.GE, t.LE = GE, LE [is_integral(ge[i], data.constr_lb[ge[i]]) ? 'I' : 'C' for i = 1:GE];
t.lhs_ge = data.constr_lhs[ge, :] [is_integral(le[i], data.constr_ub[le[i]]) ? 'I' : 'C' for i = 1:LE]
t.lhs_le = data.constr_lhs[le, :] ]
t.rhs_ge = data.constr_lb[ge] end
t.rhs_le = data.constr_ub[le] @timeit "Build M1" begin
t.M1 = [
data.constr_lhs = [ I spzeros(ncols, GE + LE)
data.constr_lhs[eq, :] spzeros(EQ, GE) spzeros(EQ, LE) data.constr_lhs[ge, :] spzeros(GE, GE + LE)
data.constr_lhs[ge, :] -I spzeros(GE, LE) -data.constr_lhs[le, :] spzeros(LE, GE + LE)
data.constr_lhs[le, :] spzeros(LE, GE) I ]
] end
data.obj = [data.obj; zeros(GE + LE)] @timeit "Build M2" begin
data.var_lb = [data.var_lb; zeros(GE + LE)] t.M2 = [
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]] zeros(ncols)
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]] data.constr_lb[ge]
data.var_types = [data.var_types; ['C' for _ = 1:(GE+LE)]] -data.constr_ub[le]
data.constr_lb = [ ]
data.constr_lb[eq] end
data.constr_lb[ge] @timeit "Build t.lhs, t.rhs" begin
data.constr_ub[le] t.ncols_orig = ncols
] t.GE, t.LE = GE, LE
data.constr_ub = copy(data.constr_lb) t.lhs_ge = data.constr_lhs[ge, :]
t.lhs_le = data.constr_lhs[le, :]
t.rhs_ge = data.constr_lb[ge]
t.rhs_le = data.constr_ub[le]
end
@timeit "Build data.constr_lhs" begin
data.constr_lhs = [
data.constr_lhs[eq, :] spzeros(EQ, GE) spzeros(EQ, LE)
data.constr_lhs[ge, :] -I spzeros(GE, LE)
data.constr_lhs[le, :] spzeros(LE, GE) I
]
end
@timeit "Build other data fields" begin
data.obj = [data.obj; zeros(GE + LE)]
data.var_lb = [data.var_lb; zeros(GE + LE)]
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]]
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]]
data.var_types = [data.var_types; slack_types]
data.constr_lb = [
data.constr_lb[eq]
data.constr_lb[ge]
data.constr_ub[le]
]
data.constr_ub = copy(data.constr_lb)
end
end end
function backwards!(t::AddSlackVariables, c::ConstraintSet) function backwards!(t::AddSlackVariables, c::ConstraintSet)
@@ -155,71 +179,55 @@ end
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
Base.@kwdef mutable struct SplitFreeVars <: Transform Base.@kwdef mutable struct SplitFreeVars <: Transform
F::Int = 0 ncols::Int = 0
B::Int = 0 is_var_free::Vector{Bool} = []
free::Vector{Int} = []
others::Vector{Int} = []
end end
function forward!(t::SplitFreeVars, data::ProblemData) function forward!(t::SplitFreeVars, data::ProblemData)
lhs = data.constr_lhs lhs = data.constr_lhs
_, ncols = size(lhs) _, ncols = size(lhs)
free = [i for i = 1:ncols if !isfinite(data.var_lb[i]) && !isfinite(data.var_ub[i])] is_var_free = [!isfinite(data.var_lb[i]) && !isfinite(data.var_ub[i]) for i = 1:ncols]
others = [i for i = 1:ncols if isfinite(data.var_lb[i]) || isfinite(data.var_ub[i])] free_idx = findall(is_var_free)
t.F = length(free)
t.B = length(others)
t.free, t.others = free, others
data.obj = [ data.obj = [
data.obj[others] data.obj
data.obj[free] [-data.obj[i] for i in free_idx]
-data.obj[free]
] ]
data.constr_lhs = [lhs[:, others] lhs[:, free] -lhs[:, free]]
data.var_lb = [ data.var_lb = [
data.var_lb[others] [is_var_free[i] ? 0.0 : data.var_lb[i] for i in 1:ncols]
[0.0 for _ in free] [0 for _ in free_idx]
[0.0 for _ in free]
] ]
data.var_ub = [ data.var_ub = [
data.var_ub[others] [is_var_free[i] ? Inf : data.var_ub[i] for i in 1:ncols]
[Inf for _ in free] [Inf for _ in free_idx]
[Inf for _ in free]
] ]
data.var_types = [ data.var_types = [
data.var_types[others] data.var_types
data.var_types[free] [data.var_types[i] for i in free_idx]
data.var_types[free]
] ]
data.var_names = [ data.var_names = [
data.var_names[others] data.var_names
["$(v)_p" for v in data.var_names[free]] ["$(data.var_names[i])_neg" for i in free_idx]
["$(v)_m" for v in data.var_names[free]]
] ]
data.constr_lhs = [lhs -lhs[:, free_idx]]
t.is_var_free, t.ncols = is_var_free, ncols
end end
function backwards!(t::SplitFreeVars, c::ConstraintSet) function backwards!(t::SplitFreeVars, c::ConstraintSet)
# Convert GE constraints into LE ncols, is_var_free = t.ncols, t.is_var_free
nrows, _ = size(c.lhs) free_idx = findall(is_var_free)
ge = [i for i = 1:nrows if isfinite(c.lb[i])]
c.ub[ge], c.lb[ge] = -c.lb[ge], -c.ub[ge]
c.lhs[ge, :] *= -1
# Assert only LE constraints are left (EQ constraints are not supported) for (offset, var_idx) in enumerate(free_idx)
@assert all(c.lb .== -Inf) @assert c.lhs[:, var_idx] == -c.lhs[:, ncols+offset]
# Take minimum (weakest) coefficient
B, F = t.B, t.F
for i = 1:F
c.lhs[:, B+i] = min.(c.lhs[:, B+i], -c.lhs[:, B+F+i])
end end
c.lhs = c.lhs[:, 1:(B+F)] c.lhs = c.lhs[:, 1:ncols]
end end
function forward(t::SplitFreeVars, p::Vector{Float64})::Vector{Float64} function forward(t::SplitFreeVars, p::Vector{Float64})::Vector{Float64}
ncols, is_var_free = t.ncols, t.is_var_free
free_idx = findall(is_var_free)
return [ return [
p[t.others] [is_var_free[i] ? max(0, p[i]) : p[i] for i in 1:ncols]
max.(p[t.free], 0) [max(0, -p[i]) for i in free_idx]
max.(-p[t.free], 0)
] ]
end end