mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Split relaxation.py into multiple files
This commit is contained in:
@@ -3,16 +3,13 @@
|
|||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from copy import deepcopy
|
|
||||||
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
from miplearn import Component
|
from miplearn import Component
|
||||||
from miplearn.classifiers.counting import CountingClassifier
|
from miplearn.classifiers.counting import CountingClassifier
|
||||||
from miplearn.components import classifier_evaluation_dict
|
|
||||||
from miplearn.components.composite import CompositeComponent
|
from miplearn.components.composite import CompositeComponent
|
||||||
from miplearn.components.lazy_static import LazyConstraint
|
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||||
from miplearn.extractors import InstanceIterator
|
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||||
|
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@@ -20,17 +17,11 @@ logger = logging.getLogger(__name__)
|
|||||||
class RelaxationComponent(Component):
|
class RelaxationComponent(Component):
|
||||||
"""
|
"""
|
||||||
A Component that tries to build a relaxation that is simultaneously strong and easy
|
A Component that tries to build a relaxation that is simultaneously strong and easy
|
||||||
to solve.
|
to solve. Currently, this component is composed by three steps:
|
||||||
|
|
||||||
Currently, this component performs the following operations:
|
- RelaxIntegralityStep
|
||||||
- Drops all integrality constraints
|
- DropRedundantInequalitiesStep
|
||||||
- Drops all inequality constraints that are likely redundant, and optionally
|
- ConvertTightIneqsIntoEqsStep
|
||||||
double checks that all dropped constraints are actually satisfied.
|
|
||||||
- Converts inequalities that are likely binding into equalities, and double
|
|
||||||
checks all resulting equalities have zero marginal costs.
|
|
||||||
|
|
||||||
In future versions of MIPLearn, this component may keep some integrality constraints
|
|
||||||
and perform other operations.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
@@ -103,293 +94,3 @@ class RelaxationComponent(Component):
|
|||||||
|
|
||||||
def iteration_cb(self, solver, instance, model):
|
def iteration_cb(self, solver, instance, model):
|
||||||
return self.composite.iteration_cb(solver, instance, model)
|
return self.composite.iteration_cb(solver, instance, model)
|
||||||
|
|
||||||
|
|
||||||
class RelaxIntegralityStep(Component):
|
|
||||||
def before_solve(self, solver, instance, _):
|
|
||||||
logger.info("Relaxing integrality...")
|
|
||||||
solver.internal_solver.relax()
|
|
||||||
|
|
||||||
|
|
||||||
class DropRedundantInequalitiesStep(Component):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
classifier=CountingClassifier(),
|
|
||||||
threshold=0.95,
|
|
||||||
slack_tolerance=1e-5,
|
|
||||||
check_dropped=False,
|
|
||||||
violation_tolerance=1e-5,
|
|
||||||
max_iterations=3,
|
|
||||||
):
|
|
||||||
self.classifiers = {}
|
|
||||||
self.classifier_prototype = classifier
|
|
||||||
self.threshold = threshold
|
|
||||||
self.slack_tolerance = slack_tolerance
|
|
||||||
self.pool = []
|
|
||||||
self.check_dropped = check_dropped
|
|
||||||
self.violation_tolerance = violation_tolerance
|
|
||||||
self.max_iterations = max_iterations
|
|
||||||
self.current_iteration = 0
|
|
||||||
|
|
||||||
def before_solve(self, solver, instance, _):
|
|
||||||
self.current_iteration = 0
|
|
||||||
|
|
||||||
logger.info("Predicting redundant LP constraints...")
|
|
||||||
cids = solver.internal_solver.get_constraint_ids()
|
|
||||||
x, constraints = self.x(
|
|
||||||
[instance],
|
|
||||||
constraint_ids=cids,
|
|
||||||
return_constraints=True,
|
|
||||||
)
|
|
||||||
y = self.predict(x)
|
|
||||||
for category in y.keys():
|
|
||||||
for i in range(len(y[category])):
|
|
||||||
if y[category][i][0] == 1:
|
|
||||||
cid = constraints[category][i]
|
|
||||||
c = LazyConstraint(
|
|
||||||
cid=cid,
|
|
||||||
obj=solver.internal_solver.extract_constraint(cid),
|
|
||||||
)
|
|
||||||
self.pool += [c]
|
|
||||||
logger.info("Extracted %d predicted constraints" % len(self.pool))
|
|
||||||
|
|
||||||
def after_solve(self, solver, instance, model, results):
|
|
||||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
|
||||||
|
|
||||||
def fit(self, training_instances):
|
|
||||||
logger.debug("Extracting x and y...")
|
|
||||||
x = self.x(training_instances)
|
|
||||||
y = self.y(training_instances)
|
|
||||||
logger.debug("Fitting...")
|
|
||||||
for category in tqdm(x.keys(), desc="Fit (rlx:drop_ineq)"):
|
|
||||||
if category not in self.classifiers:
|
|
||||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
||||||
self.classifiers[category].fit(x[category], y[category])
|
|
||||||
|
|
||||||
def x(self, instances, constraint_ids=None, return_constraints=False):
|
|
||||||
x = {}
|
|
||||||
constraints = {}
|
|
||||||
for instance in tqdm(
|
|
||||||
InstanceIterator(instances),
|
|
||||||
desc="Extract (rlx:drop_ineq:x)",
|
|
||||||
disable=len(instances) < 5,
|
|
||||||
):
|
|
||||||
if constraint_ids is not None:
|
|
||||||
cids = constraint_ids
|
|
||||||
else:
|
|
||||||
cids = instance.slacks.keys()
|
|
||||||
for cid in cids:
|
|
||||||
category = instance.get_constraint_category(cid)
|
|
||||||
if category is None:
|
|
||||||
continue
|
|
||||||
if category not in x:
|
|
||||||
x[category] = []
|
|
||||||
constraints[category] = []
|
|
||||||
x[category] += [instance.get_constraint_features(cid)]
|
|
||||||
constraints[category] += [cid]
|
|
||||||
if return_constraints:
|
|
||||||
return x, constraints
|
|
||||||
else:
|
|
||||||
return x
|
|
||||||
|
|
||||||
def y(self, instances):
|
|
||||||
y = {}
|
|
||||||
for instance in tqdm(
|
|
||||||
InstanceIterator(instances),
|
|
||||||
desc="Extract (rlx:drop_ineq:y)",
|
|
||||||
disable=len(instances) < 5,
|
|
||||||
):
|
|
||||||
for (cid, slack) in instance.slacks.items():
|
|
||||||
category = instance.get_constraint_category(cid)
|
|
||||||
if category is None:
|
|
||||||
continue
|
|
||||||
if category not in y:
|
|
||||||
y[category] = []
|
|
||||||
if slack > self.slack_tolerance:
|
|
||||||
y[category] += [[1]]
|
|
||||||
else:
|
|
||||||
y[category] += [[0]]
|
|
||||||
return y
|
|
||||||
|
|
||||||
def predict(self, x):
|
|
||||||
y = {}
|
|
||||||
for (category, x_cat) in x.items():
|
|
||||||
if category not in self.classifiers:
|
|
||||||
continue
|
|
||||||
y[category] = []
|
|
||||||
# x_cat = np.array(x_cat)
|
|
||||||
proba = self.classifiers[category].predict_proba(x_cat)
|
|
||||||
for i in range(len(proba)):
|
|
||||||
if proba[i][1] >= self.threshold:
|
|
||||||
y[category] += [[1]]
|
|
||||||
else:
|
|
||||||
y[category] += [[0]]
|
|
||||||
return y
|
|
||||||
|
|
||||||
def evaluate(self, instance):
|
|
||||||
x = self.x([instance])
|
|
||||||
y_true = self.y([instance])
|
|
||||||
y_pred = self.predict(x)
|
|
||||||
tp, tn, fp, fn = 0, 0, 0, 0
|
|
||||||
for category in y_true.keys():
|
|
||||||
for i in range(len(y_true[category])):
|
|
||||||
if y_pred[category][i][0] == 1:
|
|
||||||
if y_true[category][i][0] == 1:
|
|
||||||
tp += 1
|
|
||||||
else:
|
|
||||||
fp += 1
|
|
||||||
else:
|
|
||||||
if y_true[category][i][0] == 1:
|
|
||||||
fn += 1
|
|
||||||
else:
|
|
||||||
tn += 1
|
|
||||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
|
||||||
|
|
||||||
def iteration_cb(self, solver, instance, model):
|
|
||||||
if not self.check_dropped:
|
|
||||||
return False
|
|
||||||
if self.current_iteration >= self.max_iterations:
|
|
||||||
return False
|
|
||||||
self.current_iteration += 1
|
|
||||||
logger.debug("Checking that dropped constraints are satisfied...")
|
|
||||||
constraints_to_add = []
|
|
||||||
for c in self.pool:
|
|
||||||
if not solver.internal_solver.is_constraint_satisfied(
|
|
||||||
c.obj,
|
|
||||||
self.violation_tolerance,
|
|
||||||
):
|
|
||||||
constraints_to_add.append(c)
|
|
||||||
for c in constraints_to_add:
|
|
||||||
self.pool.remove(c)
|
|
||||||
solver.internal_solver.add_constraint(c.obj)
|
|
||||||
if len(constraints_to_add) > 0:
|
|
||||||
logger.info(
|
|
||||||
"%8d constraints %8d in the pool"
|
|
||||||
% (len(constraints_to_add), len(self.pool))
|
|
||||||
)
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
class ConvertTightIneqsIntoEqsStep(Component):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
classifier=CountingClassifier(),
|
|
||||||
threshold=0.95,
|
|
||||||
slack_tolerance=1e-5,
|
|
||||||
):
|
|
||||||
self.classifiers = {}
|
|
||||||
self.classifier_prototype = classifier
|
|
||||||
self.threshold = threshold
|
|
||||||
self.slack_tolerance = slack_tolerance
|
|
||||||
|
|
||||||
def before_solve(self, solver, instance, _):
|
|
||||||
logger.info("Predicting tight LP constraints...")
|
|
||||||
cids = solver.internal_solver.get_constraint_ids()
|
|
||||||
x, constraints = self.x(
|
|
||||||
[instance],
|
|
||||||
constraint_ids=cids,
|
|
||||||
return_constraints=True,
|
|
||||||
)
|
|
||||||
y = self.predict(x)
|
|
||||||
n_converted = 0
|
|
||||||
for category in y.keys():
|
|
||||||
for i in range(len(y[category])):
|
|
||||||
if y[category][i][0] == 1:
|
|
||||||
cid = constraints[category][i]
|
|
||||||
solver.internal_solver.set_constraint_sense(cid, "=")
|
|
||||||
n_converted += 1
|
|
||||||
logger.info(f"Converted {n_converted} inequalities into equalities")
|
|
||||||
|
|
||||||
def after_solve(self, solver, instance, model, results):
|
|
||||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
|
||||||
|
|
||||||
def fit(self, training_instances):
|
|
||||||
logger.debug("Extracting x and y...")
|
|
||||||
x = self.x(training_instances)
|
|
||||||
y = self.y(training_instances)
|
|
||||||
logger.debug("Fitting...")
|
|
||||||
for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"):
|
|
||||||
if category not in self.classifiers:
|
|
||||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
||||||
self.classifiers[category].fit(x[category], y[category])
|
|
||||||
|
|
||||||
def x(self, instances, constraint_ids=None, return_constraints=False):
|
|
||||||
x = {}
|
|
||||||
constraints = {}
|
|
||||||
for instance in tqdm(
|
|
||||||
InstanceIterator(instances),
|
|
||||||
desc="Extract (rlx:conv_ineqs:x)",
|
|
||||||
disable=len(instances) < 5,
|
|
||||||
):
|
|
||||||
if constraint_ids is not None:
|
|
||||||
cids = constraint_ids
|
|
||||||
else:
|
|
||||||
cids = instance.slacks.keys()
|
|
||||||
for cid in cids:
|
|
||||||
category = instance.get_constraint_category(cid)
|
|
||||||
if category is None:
|
|
||||||
continue
|
|
||||||
if category not in x:
|
|
||||||
x[category] = []
|
|
||||||
constraints[category] = []
|
|
||||||
x[category] += [instance.get_constraint_features(cid)]
|
|
||||||
constraints[category] += [cid]
|
|
||||||
if return_constraints:
|
|
||||||
return x, constraints
|
|
||||||
else:
|
|
||||||
return x
|
|
||||||
|
|
||||||
def y(self, instances):
|
|
||||||
y = {}
|
|
||||||
for instance in tqdm(
|
|
||||||
InstanceIterator(instances),
|
|
||||||
desc="Extract (rlx:conv_ineqs:y)",
|
|
||||||
disable=len(instances) < 5,
|
|
||||||
):
|
|
||||||
for (cid, slack) in instance.slacks.items():
|
|
||||||
category = instance.get_constraint_category(cid)
|
|
||||||
if category is None:
|
|
||||||
continue
|
|
||||||
if category not in y:
|
|
||||||
y[category] = []
|
|
||||||
if slack <= self.slack_tolerance:
|
|
||||||
y[category] += [[1]]
|
|
||||||
else:
|
|
||||||
y[category] += [[0]]
|
|
||||||
return y
|
|
||||||
|
|
||||||
def predict(self, x):
|
|
||||||
y = {}
|
|
||||||
for (category, x_cat) in x.items():
|
|
||||||
if category not in self.classifiers:
|
|
||||||
continue
|
|
||||||
y[category] = []
|
|
||||||
# x_cat = np.array(x_cat)
|
|
||||||
proba = self.classifiers[category].predict_proba(x_cat)
|
|
||||||
for i in range(len(proba)):
|
|
||||||
if proba[i][1] >= self.threshold:
|
|
||||||
y[category] += [[1]]
|
|
||||||
else:
|
|
||||||
y[category] += [[0]]
|
|
||||||
return y
|
|
||||||
|
|
||||||
def evaluate(self, instance):
|
|
||||||
x = self.x([instance])
|
|
||||||
y_true = self.y([instance])
|
|
||||||
y_pred = self.predict(x)
|
|
||||||
tp, tn, fp, fn = 0, 0, 0, 0
|
|
||||||
for category in y_true.keys():
|
|
||||||
for i in range(len(y_true[category])):
|
|
||||||
if y_pred[category][i][0] == 1:
|
|
||||||
if y_true[category][i][0] == 1:
|
|
||||||
tp += 1
|
|
||||||
else:
|
|
||||||
fp += 1
|
|
||||||
else:
|
|
||||||
if y_true[category][i][0] == 1:
|
|
||||||
fn += 1
|
|
||||||
else:
|
|
||||||
tn += 1
|
|
||||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
|
||||||
|
|||||||
0
miplearn/components/steps/__init__.py
Normal file
0
miplearn/components/steps/__init__.py
Normal file
153
miplearn/components/steps/convert_tight.py
Normal file
153
miplearn/components/steps/convert_tight.py
Normal file
@@ -0,0 +1,153 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from miplearn import Component
|
||||||
|
from miplearn.classifiers.counting import CountingClassifier
|
||||||
|
from miplearn.components import classifier_evaluation_dict
|
||||||
|
from miplearn.extractors import InstanceIterator
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class ConvertTightIneqsIntoEqsStep(Component):
|
||||||
|
"""
|
||||||
|
Component that predicts which inequality constraints are likely to be binding in
|
||||||
|
the LP relaxation of the problem and converts them into equality constraints.
|
||||||
|
Optionally double checks that the conversion process did not affect feasibility
|
||||||
|
or optimality of the problem.
|
||||||
|
|
||||||
|
This component does not work on MIPs. All integrality constraints must be relaxed
|
||||||
|
before this component is used.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
classifier=CountingClassifier(),
|
||||||
|
threshold=0.95,
|
||||||
|
slack_tolerance=1e-5,
|
||||||
|
):
|
||||||
|
self.classifiers = {}
|
||||||
|
self.classifier_prototype = classifier
|
||||||
|
self.threshold = threshold
|
||||||
|
self.slack_tolerance = slack_tolerance
|
||||||
|
|
||||||
|
def before_solve(self, solver, instance, _):
|
||||||
|
logger.info("Predicting tight LP constraints...")
|
||||||
|
cids = solver.internal_solver.get_constraint_ids()
|
||||||
|
x, constraints = self.x(
|
||||||
|
[instance],
|
||||||
|
constraint_ids=cids,
|
||||||
|
return_constraints=True,
|
||||||
|
)
|
||||||
|
y = self.predict(x)
|
||||||
|
n_converted = 0
|
||||||
|
for category in y.keys():
|
||||||
|
for i in range(len(y[category])):
|
||||||
|
if y[category][i][0] == 1:
|
||||||
|
cid = constraints[category][i]
|
||||||
|
solver.internal_solver.set_constraint_sense(cid, "=")
|
||||||
|
n_converted += 1
|
||||||
|
logger.info(f"Converted {n_converted} inequalities into equalities")
|
||||||
|
|
||||||
|
def after_solve(self, solver, instance, model, results):
|
||||||
|
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||||
|
|
||||||
|
def fit(self, training_instances):
|
||||||
|
logger.debug("Extracting x and y...")
|
||||||
|
x = self.x(training_instances)
|
||||||
|
y = self.y(training_instances)
|
||||||
|
logger.debug("Fitting...")
|
||||||
|
for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"):
|
||||||
|
if category not in self.classifiers:
|
||||||
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||||
|
self.classifiers[category].fit(x[category], y[category])
|
||||||
|
|
||||||
|
def x(
|
||||||
|
self,
|
||||||
|
instances,
|
||||||
|
constraint_ids=None,
|
||||||
|
return_constraints=False,
|
||||||
|
):
|
||||||
|
x = {}
|
||||||
|
constraints = {}
|
||||||
|
for instance in tqdm(
|
||||||
|
InstanceIterator(instances),
|
||||||
|
desc="Extract (rlx:conv_ineqs:x)",
|
||||||
|
disable=len(instances) < 5,
|
||||||
|
):
|
||||||
|
if constraint_ids is not None:
|
||||||
|
cids = constraint_ids
|
||||||
|
else:
|
||||||
|
cids = instance.slacks.keys()
|
||||||
|
for cid in cids:
|
||||||
|
category = instance.get_constraint_category(cid)
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in x:
|
||||||
|
x[category] = []
|
||||||
|
constraints[category] = []
|
||||||
|
x[category] += [instance.get_constraint_features(cid)]
|
||||||
|
constraints[category] += [cid]
|
||||||
|
if return_constraints:
|
||||||
|
return x, constraints
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
def y(self, instances):
|
||||||
|
y = {}
|
||||||
|
for instance in tqdm(
|
||||||
|
InstanceIterator(instances),
|
||||||
|
desc="Extract (rlx:conv_ineqs:y)",
|
||||||
|
disable=len(instances) < 5,
|
||||||
|
):
|
||||||
|
for (cid, slack) in instance.slacks.items():
|
||||||
|
category = instance.get_constraint_category(cid)
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in y:
|
||||||
|
y[category] = []
|
||||||
|
if slack <= self.slack_tolerance:
|
||||||
|
y[category] += [[1]]
|
||||||
|
else:
|
||||||
|
y[category] += [[0]]
|
||||||
|
return y
|
||||||
|
|
||||||
|
def predict(self, x):
|
||||||
|
y = {}
|
||||||
|
for (category, x_cat) in x.items():
|
||||||
|
if category not in self.classifiers:
|
||||||
|
continue
|
||||||
|
y[category] = []
|
||||||
|
# x_cat = np.array(x_cat)
|
||||||
|
proba = self.classifiers[category].predict_proba(x_cat)
|
||||||
|
for i in range(len(proba)):
|
||||||
|
if proba[i][1] >= self.threshold:
|
||||||
|
y[category] += [[1]]
|
||||||
|
else:
|
||||||
|
y[category] += [[0]]
|
||||||
|
return y
|
||||||
|
|
||||||
|
def evaluate(self, instance):
|
||||||
|
x = self.x([instance])
|
||||||
|
y_true = self.y([instance])
|
||||||
|
y_pred = self.predict(x)
|
||||||
|
tp, tn, fp, fn = 0, 0, 0, 0
|
||||||
|
for category in y_true.keys():
|
||||||
|
for i in range(len(y_true[category])):
|
||||||
|
if y_pred[category][i][0] == 1:
|
||||||
|
if y_true[category][i][0] == 1:
|
||||||
|
tp += 1
|
||||||
|
else:
|
||||||
|
fp += 1
|
||||||
|
else:
|
||||||
|
if y_true[category][i][0] == 1:
|
||||||
|
fn += 1
|
||||||
|
else:
|
||||||
|
tn += 1
|
||||||
|
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||||
186
miplearn/components/steps/drop_redundant.py
Normal file
186
miplearn/components/steps/drop_redundant.py
Normal file
@@ -0,0 +1,186 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from miplearn import Component
|
||||||
|
from miplearn.classifiers.counting import CountingClassifier
|
||||||
|
from miplearn.components import classifier_evaluation_dict
|
||||||
|
from miplearn.components.lazy_static import LazyConstraint
|
||||||
|
from miplearn.extractors import InstanceIterator
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class DropRedundantInequalitiesStep(Component):
|
||||||
|
"""
|
||||||
|
Component that predicts which inequalities are likely loose in the LP and removes
|
||||||
|
them. Optionally, double checks after the problem is solved that all dropped
|
||||||
|
inequalities were in fact redundant, and, if not, re-adds them to the problem.
|
||||||
|
|
||||||
|
This component does not work on MIPs. All integrality constraints must be relaxed
|
||||||
|
before this component is used.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
classifier=CountingClassifier(),
|
||||||
|
threshold=0.95,
|
||||||
|
slack_tolerance=1e-5,
|
||||||
|
check_dropped=False,
|
||||||
|
violation_tolerance=1e-5,
|
||||||
|
max_iterations=3,
|
||||||
|
):
|
||||||
|
self.classifiers = {}
|
||||||
|
self.classifier_prototype = classifier
|
||||||
|
self.threshold = threshold
|
||||||
|
self.slack_tolerance = slack_tolerance
|
||||||
|
self.pool = []
|
||||||
|
self.check_dropped = check_dropped
|
||||||
|
self.violation_tolerance = violation_tolerance
|
||||||
|
self.max_iterations = max_iterations
|
||||||
|
self.current_iteration = 0
|
||||||
|
|
||||||
|
def before_solve(self, solver, instance, _):
|
||||||
|
self.current_iteration = 0
|
||||||
|
|
||||||
|
logger.info("Predicting redundant LP constraints...")
|
||||||
|
cids = solver.internal_solver.get_constraint_ids()
|
||||||
|
x, constraints = self.x(
|
||||||
|
[instance],
|
||||||
|
constraint_ids=cids,
|
||||||
|
return_constraints=True,
|
||||||
|
)
|
||||||
|
y = self.predict(x)
|
||||||
|
for category in y.keys():
|
||||||
|
for i in range(len(y[category])):
|
||||||
|
if y[category][i][0] == 1:
|
||||||
|
cid = constraints[category][i]
|
||||||
|
c = LazyConstraint(
|
||||||
|
cid=cid,
|
||||||
|
obj=solver.internal_solver.extract_constraint(cid),
|
||||||
|
)
|
||||||
|
self.pool += [c]
|
||||||
|
logger.info("Extracted %d predicted constraints" % len(self.pool))
|
||||||
|
|
||||||
|
def after_solve(self, solver, instance, model, results):
|
||||||
|
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||||
|
|
||||||
|
def fit(self, training_instances):
|
||||||
|
logger.debug("Extracting x and y...")
|
||||||
|
x = self.x(training_instances)
|
||||||
|
y = self.y(training_instances)
|
||||||
|
logger.debug("Fitting...")
|
||||||
|
for category in tqdm(x.keys(), desc="Fit (rlx:drop_ineq)"):
|
||||||
|
if category not in self.classifiers:
|
||||||
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||||
|
self.classifiers[category].fit(x[category], y[category])
|
||||||
|
|
||||||
|
def x(self, instances, constraint_ids=None, return_constraints=False):
|
||||||
|
x = {}
|
||||||
|
constraints = {}
|
||||||
|
for instance in tqdm(
|
||||||
|
InstanceIterator(instances),
|
||||||
|
desc="Extract (rlx:drop_ineq:x)",
|
||||||
|
disable=len(instances) < 5,
|
||||||
|
):
|
||||||
|
if constraint_ids is not None:
|
||||||
|
cids = constraint_ids
|
||||||
|
else:
|
||||||
|
cids = instance.slacks.keys()
|
||||||
|
for cid in cids:
|
||||||
|
category = instance.get_constraint_category(cid)
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in x:
|
||||||
|
x[category] = []
|
||||||
|
constraints[category] = []
|
||||||
|
x[category] += [instance.get_constraint_features(cid)]
|
||||||
|
constraints[category] += [cid]
|
||||||
|
if return_constraints:
|
||||||
|
return x, constraints
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
def y(self, instances):
|
||||||
|
y = {}
|
||||||
|
for instance in tqdm(
|
||||||
|
InstanceIterator(instances),
|
||||||
|
desc="Extract (rlx:drop_ineq:y)",
|
||||||
|
disable=len(instances) < 5,
|
||||||
|
):
|
||||||
|
for (cid, slack) in instance.slacks.items():
|
||||||
|
category = instance.get_constraint_category(cid)
|
||||||
|
if category is None:
|
||||||
|
continue
|
||||||
|
if category not in y:
|
||||||
|
y[category] = []
|
||||||
|
if slack > self.slack_tolerance:
|
||||||
|
y[category] += [[1]]
|
||||||
|
else:
|
||||||
|
y[category] += [[0]]
|
||||||
|
return y
|
||||||
|
|
||||||
|
def predict(self, x):
|
||||||
|
y = {}
|
||||||
|
for (category, x_cat) in x.items():
|
||||||
|
if category not in self.classifiers:
|
||||||
|
continue
|
||||||
|
y[category] = []
|
||||||
|
# x_cat = np.array(x_cat)
|
||||||
|
proba = self.classifiers[category].predict_proba(x_cat)
|
||||||
|
for i in range(len(proba)):
|
||||||
|
if proba[i][1] >= self.threshold:
|
||||||
|
y[category] += [[1]]
|
||||||
|
else:
|
||||||
|
y[category] += [[0]]
|
||||||
|
return y
|
||||||
|
|
||||||
|
def evaluate(self, instance):
|
||||||
|
x = self.x([instance])
|
||||||
|
y_true = self.y([instance])
|
||||||
|
y_pred = self.predict(x)
|
||||||
|
tp, tn, fp, fn = 0, 0, 0, 0
|
||||||
|
for category in y_true.keys():
|
||||||
|
for i in range(len(y_true[category])):
|
||||||
|
if y_pred[category][i][0] == 1:
|
||||||
|
if y_true[category][i][0] == 1:
|
||||||
|
tp += 1
|
||||||
|
else:
|
||||||
|
fp += 1
|
||||||
|
else:
|
||||||
|
if y_true[category][i][0] == 1:
|
||||||
|
fn += 1
|
||||||
|
else:
|
||||||
|
tn += 1
|
||||||
|
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||||
|
|
||||||
|
def iteration_cb(self, solver, instance, model):
|
||||||
|
if not self.check_dropped:
|
||||||
|
return False
|
||||||
|
if self.current_iteration >= self.max_iterations:
|
||||||
|
return False
|
||||||
|
self.current_iteration += 1
|
||||||
|
logger.debug("Checking that dropped constraints are satisfied...")
|
||||||
|
constraints_to_add = []
|
||||||
|
for c in self.pool:
|
||||||
|
if not solver.internal_solver.is_constraint_satisfied(
|
||||||
|
c.obj,
|
||||||
|
self.violation_tolerance,
|
||||||
|
):
|
||||||
|
constraints_to_add.append(c)
|
||||||
|
for c in constraints_to_add:
|
||||||
|
self.pool.remove(c)
|
||||||
|
solver.internal_solver.add_constraint(c.obj)
|
||||||
|
if len(constraints_to_add) > 0:
|
||||||
|
logger.info(
|
||||||
|
"%8d constraints %8d in the pool"
|
||||||
|
% (len(constraints_to_add), len(self.pool))
|
||||||
|
)
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
19
miplearn/components/steps/relax_integrality.py
Normal file
19
miplearn/components/steps/relax_integrality.py
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from miplearn import Component
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class RelaxIntegralityStep(Component):
|
||||||
|
"""
|
||||||
|
Component that relaxes all integrality constraints before the problem is solved.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def before_solve(self, solver, instance, _):
|
||||||
|
logger.info("Relaxing integrality...")
|
||||||
|
solver.internal_solver.relax()
|
||||||
@@ -4,7 +4,7 @@
|
|||||||
|
|
||||||
from unittest.mock import Mock, call
|
from unittest.mock import Mock, call
|
||||||
|
|
||||||
from miplearn import RelaxationComponent, LearningSolver, Instance, InternalSolver
|
from miplearn import LearningSolver, Instance, InternalSolver
|
||||||
from miplearn.classifiers import Classifier
|
from miplearn.classifiers import Classifier
|
||||||
from miplearn.components.relaxation import DropRedundantInequalitiesStep
|
from miplearn.components.relaxation import DropRedundantInequalitiesStep
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user