mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement RelaxationComponent
This commit is contained in:
@@ -13,6 +13,7 @@ from .components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from .components.lazy_static import StaticLazyConstraintsComponent
|
||||
from .components.cuts import UserCutsComponent
|
||||
from .components.primal import PrimalSolutionComponent
|
||||
from .components.relaxation import RelaxationComponent
|
||||
|
||||
from .classifiers.adaptive import AdaptiveClassifier
|
||||
from .classifiers.threshold import MinPrecisionThreshold
|
||||
|
||||
@@ -29,7 +29,6 @@ def classifier_evaluation_dict(tp, tn, fp, fn):
|
||||
else:
|
||||
d["Precision"] = 1.0
|
||||
|
||||
|
||||
t = (p + n) / 100.0
|
||||
d["Predicted positive (%)"] = d["Predicted positive"] / t
|
||||
d["Predicted negative (%)"] = d["Predicted negative"] / t
|
||||
|
||||
@@ -25,7 +25,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
use_two_phase_gap=True,
|
||||
large_gap=1e-2,
|
||||
violation_tolerance=-0.5,
|
||||
):
|
||||
):
|
||||
self.threshold = threshold
|
||||
self.classifier_prototype = classifier
|
||||
self.classifiers = {}
|
||||
@@ -116,11 +116,11 @@ class StaticLazyConstraintsComponent(Component):
|
||||
logger.info("Extracting lazy constraints...")
|
||||
for cid in solver.internal_solver.get_constraint_ids():
|
||||
if instance.is_constraint_lazy(cid):
|
||||
category = instance.get_lazy_constraint_category(cid)
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_lazy_constraint_features(cid)]
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
c = LazyConstraint(cid=cid,
|
||||
obj=solver.internal_solver.extract_constraint(cid))
|
||||
constraints[category] += [c]
|
||||
@@ -147,7 +147,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
constraints = {}
|
||||
for instance in train_instances:
|
||||
for cid in instance.found_violated_lazy_constraints:
|
||||
category = instance.get_lazy_constraint_category(cid)
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category not in constraints:
|
||||
constraints[category] = set()
|
||||
constraints[category].add(cid)
|
||||
@@ -162,7 +162,7 @@ class StaticLazyConstraintsComponent(Component):
|
||||
result[category] = []
|
||||
for instance in train_instances:
|
||||
for cid in cids:
|
||||
result[category].append(instance.get_lazy_constraint_features(cid))
|
||||
result[category].append(instance.get_constraint_features(cid))
|
||||
return result
|
||||
|
||||
def y(self, train_instances):
|
||||
|
||||
151
miplearn/components/relaxation.py
Normal file
151
miplearn/components/relaxation.py
Normal file
@@ -0,0 +1,151 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from tqdm import tqdm
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RelaxationComponent(Component):
|
||||
"""
|
||||
A Component which builds a relaxation of the problem by dropping constraints.
|
||||
|
||||
Currently, this component drops all integrality constraints, as well as
|
||||
all inequality constraints which are not likely binding in the LP relaxation.
|
||||
In a future version of MIPLearn, this component may decide to keep some
|
||||
integrality constraints it it determines that they have small impact on
|
||||
running time, but large impact on dual bound.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
slack_tolerance=1e-5,
|
||||
):
|
||||
self.classifiers = {}
|
||||
self.classifier_prototype = classifier
|
||||
self.threshold = threshold
|
||||
self.slack_tolerance = slack_tolerance
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
logger.info("Relaxing integrality...")
|
||||
solver.internal_solver.relax()
|
||||
|
||||
logger.info("Predicting redundant LP constraints...")
|
||||
cids = solver.internal_solver.get_constraint_ids()
|
||||
x, constraints = self.x([instance],
|
||||
constraint_ids=cids,
|
||||
return_constraints=True)
|
||||
y = self.predict(x)
|
||||
n_removed = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
cid = constraints[category][i]
|
||||
solver.internal_solver.extract_constraint(cid)
|
||||
n_removed += 1
|
||||
logger.info("Removed %d predicted redundant LP constraints" % n_removed)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||
|
||||
def fit(self, training_instances):
|
||||
training_instances = [instance
|
||||
for instance in training_instances
|
||||
if hasattr(instance, "slacks")]
|
||||
logger.debug("Extracting x and y...")
|
||||
x = self.x(training_instances)
|
||||
y = self.y(training_instances)
|
||||
logger.debug("Fitting...")
|
||||
for category in tqdm(x.keys(),
|
||||
desc="Fit (relaxation)",
|
||||
disable=not sys.stdout.isatty()):
|
||||
if category not in self.classifiers:
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
def x(self,
|
||||
instances,
|
||||
constraint_ids=None,
|
||||
return_constraints=False):
|
||||
x = {}
|
||||
constraints = {}
|
||||
for instance in instances:
|
||||
if constraint_ids is not None:
|
||||
cids = constraint_ids
|
||||
else:
|
||||
cids = instance.slacks.keys()
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
constraints[category] += [cid]
|
||||
if return_constraints:
|
||||
return x, constraints
|
||||
else:
|
||||
return x
|
||||
|
||||
def y(self, instances):
|
||||
y = {}
|
||||
for instance in instances:
|
||||
for (cid, slack) in instance.slacks.items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if slack > self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def predict(self, x):
|
||||
y = {}
|
||||
for (category, x_cat) in x.items():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
y[category] = []
|
||||
#x_cat = np.array(x_cat)
|
||||
proba = self.classifiers[category].predict_proba(x_cat)
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] >= self.threshold:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def evaluate(self, instance):
|
||||
x = self.x([instance])
|
||||
y_true = self.y([instance])
|
||||
y_pred = self.predict(x)
|
||||
tp, tn, fp, fn = 0, 0, 0, 0
|
||||
for category in y_true.keys():
|
||||
for i in range(len(y_true[category])):
|
||||
if y_pred[category][i][0] == 1:
|
||||
if y_true[category][i][0] == 1:
|
||||
tp += 1
|
||||
else:
|
||||
fp += 1
|
||||
else:
|
||||
if y_true[category][i][0] == 1:
|
||||
fn += 1
|
||||
else:
|
||||
tn += 1
|
||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
|
||||
|
||||
@@ -29,12 +29,12 @@ def test_usage_with_solver():
|
||||
"c3": True,
|
||||
"c4": True,
|
||||
}[cid])
|
||||
instance.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
||||
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
}[cid])
|
||||
instance.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
||||
instance.get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
@@ -72,13 +72,13 @@ def test_usage_with_solver():
|
||||
])
|
||||
|
||||
# For the lazy ones, should ask for features
|
||||
instance.get_lazy_constraint_features.assert_has_calls([
|
||||
instance.get_constraint_features.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# Should also ask for categories
|
||||
assert instance.get_lazy_constraint_category.call_count == 3
|
||||
instance.get_lazy_constraint_category.assert_has_calls([
|
||||
assert instance.get_constraint_category.call_count == 3
|
||||
instance.get_constraint_category.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
@@ -126,14 +126,14 @@ def test_usage_with_solver():
|
||||
def test_fit():
|
||||
instance_1 = Mock(spec=Instance)
|
||||
instance_1.found_violated_lazy_constraints = ["c1", "c2", "c4", "c5"]
|
||||
instance_1.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
||||
instance_1.get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
"c5": "type-b",
|
||||
}[cid])
|
||||
instance_1.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
||||
instance_1.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c1": [1, 1],
|
||||
"c2": [1, 2],
|
||||
"c3": [1, 3],
|
||||
@@ -143,14 +143,14 @@ def test_fit():
|
||||
|
||||
instance_2 = Mock(spec=Instance)
|
||||
instance_2.found_violated_lazy_constraints = ["c2", "c3", "c4"]
|
||||
instance_2.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
||||
instance_2.get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": "type-a",
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
"c5": "type-b",
|
||||
}[cid])
|
||||
instance_2.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
||||
instance_2.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c1": [2, 1],
|
||||
"c2": [2, 2],
|
||||
"c3": [2, 3],
|
||||
|
||||
188
miplearn/components/tests/test_relaxation.py
Normal file
188
miplearn/components/tests/test_relaxation.py
Normal file
@@ -0,0 +1,188 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import (RelaxationComponent,
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver)
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
|
||||
def test_usage_with_solver():
|
||||
solver = Mock(spec=LearningSolver)
|
||||
|
||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
|
||||
internal.get_constraint_slacks = Mock(side_effect=lambda: {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
"c3": 0.0,
|
||||
"c4": 1.4,
|
||||
})
|
||||
|
||||
instance = Mock(spec=Instance)
|
||||
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
}[cid])
|
||||
instance.get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
|
||||
component = RelaxationComponent()
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.02, 0.98],
|
||||
])
|
||||
|
||||
# LearningSolver calls before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
# Should relax integrality of the problem
|
||||
internal.relax.assert_called_once()
|
||||
|
||||
# Should query list of constraints
|
||||
internal.get_constraint_ids.assert_called_once()
|
||||
|
||||
# Should query category and features for each constraint in the model
|
||||
assert instance.get_constraint_category.call_count == 4
|
||||
instance.get_constraint_category.assert_has_calls([
|
||||
call("c1"), call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# For constraint with non-null categories, should ask for features
|
||||
assert instance.get_constraint_features.call_count == 3
|
||||
instance.get_constraint_features.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# Should ask ML to predict whether constraint should be removed
|
||||
component.classifiers["type-a"].predict_proba.assert_called_once_with([[1.0, 0.0], [0.5, 0.5]])
|
||||
component.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
|
||||
|
||||
# Should ask internal solver to remove constraints predicted as redundant
|
||||
assert internal.extract_constraint.call_count == 2
|
||||
internal.extract_constraint.assert_has_calls([
|
||||
call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# LearningSolver calls after_solve
|
||||
component.after_solve(solver, instance, None, None)
|
||||
|
||||
# Should query slack for all constraints
|
||||
internal.get_constraint_slacks.assert_called_once()
|
||||
|
||||
# Should store constraint slacks in instance object
|
||||
assert hasattr(instance, "slacks")
|
||||
assert instance.slacks == {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
"c3": 0.0,
|
||||
"c4": 1.4,
|
||||
}
|
||||
|
||||
|
||||
def test_x_y_fit_predict_evaluate():
|
||||
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
||||
component = RelaxationComponent(slack_tolerance=0.05,
|
||||
threshold=0.80)
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.50, 0.50],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
|
||||
# First mock instance
|
||||
instances[0].slacks = {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
instances[0].get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
instances[0].get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
}[cid])
|
||||
|
||||
# Second mock instance
|
||||
instances[1].slacks = {
|
||||
"c1": 0.00,
|
||||
"c3": 0.30,
|
||||
"c4": 0.00,
|
||||
"c5": 0.00,
|
||||
}
|
||||
instances[1].get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
"c5": "type-b",
|
||||
}[cid])
|
||||
instances[1].get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c3": [0.3, 0.4],
|
||||
"c4": [0.7],
|
||||
"c5": [0.8],
|
||||
}[cid])
|
||||
|
||||
expected_x = {
|
||||
"type-a": [[1.0, 0.0], [0.5, 0.5], [0.3, 0.4]],
|
||||
"type-b": [[1.0], [0.7], [0.8]],
|
||||
}
|
||||
expected_y = {
|
||||
"type-a": [[0], [0], [1]],
|
||||
"type-b": [[1], [0], [0]]
|
||||
}
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
assert component.x(instances) == expected_x
|
||||
assert component.y(instances) == expected_y
|
||||
|
||||
# Should pass along X and Y matrices to classifiers
|
||||
component.fit(instances)
|
||||
component.classifiers["type-a"].fit.assert_called_with(expected_x["type-a"], expected_y["type-a"])
|
||||
component.classifiers["type-b"].fit.assert_called_with(expected_x["type-b"], expected_y["type-b"])
|
||||
|
||||
assert component.predict(expected_x) == {
|
||||
"type-a": [[1]],
|
||||
"type-b": [[0], [1]]
|
||||
}
|
||||
|
||||
ev = component.evaluate(instances[1])
|
||||
assert ev["True positive"] == 1
|
||||
assert ev["True negative"] == 1
|
||||
assert ev["False positive"] == 1
|
||||
assert ev["False negative"] == 0
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -82,6 +82,12 @@ class Instance(ABC):
|
||||
"""
|
||||
return "default"
|
||||
|
||||
def get_constraint_features(self, cid):
|
||||
return np.zeros(1)
|
||||
|
||||
def get_constraint_category(self, cid):
|
||||
return cid
|
||||
|
||||
def has_static_lazy_constraints(self):
|
||||
return False
|
||||
|
||||
@@ -91,12 +97,6 @@ class Instance(ABC):
|
||||
def is_constraint_lazy(self, cid):
|
||||
return False
|
||||
|
||||
def get_lazy_constraint_features(self, cid):
|
||||
return np.zeros(1)
|
||||
|
||||
def get_lazy_constraint_category(self, cid):
|
||||
return cid
|
||||
|
||||
def find_violated_lazy_constraints(self, model):
|
||||
"""
|
||||
Returns lazy constraint violations found for the current solution.
|
||||
|
||||
@@ -274,6 +274,13 @@ class GurobiSolver(InternalSolver):
|
||||
else:
|
||||
raise Exception("Unknown sense: %s" % sense)
|
||||
|
||||
def get_constraint_slacks(self):
|
||||
return {c.ConstrName: c.Slack for c in self.model.getConstrs()}
|
||||
|
||||
def relax(self):
|
||||
self.model = self.model.relax()
|
||||
self._update_vars()
|
||||
|
||||
def set_branching_priorities(self, priorities):
|
||||
self._raise_if_callback()
|
||||
logger.warning("set_branching_priorities not implemented")
|
||||
|
||||
@@ -176,6 +176,21 @@ class InternalSolver(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def relax(self):
|
||||
"""
|
||||
Drops all integrality constraints from the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_constraint_slacks(self):
|
||||
"""
|
||||
Returns a dictionary mapping constraint name to the constraint slack
|
||||
in the current solution.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_constraint_satisfied(self, cobj):
|
||||
pass
|
||||
|
||||
@@ -25,13 +25,20 @@ INSTANCES = [None] # type: List[Optional[dict]]
|
||||
def _parallel_solve(instance_idx):
|
||||
solver = deepcopy(SOLVER[0])
|
||||
instance = INSTANCES[0][instance_idx]
|
||||
results = solver.solve(instance)
|
||||
if not hasattr(instance, "found_violated_lazy_constraints"):
|
||||
instance.found_violated_lazy_constraints = []
|
||||
if not hasattr(instance, "found_violated_user_cuts"):
|
||||
instance.found_violated_user_cuts = []
|
||||
if not hasattr(instance, "slacks"):
|
||||
instance.slacks = {}
|
||||
solver_results = solver.solve(instance)
|
||||
return {
|
||||
"Results": results,
|
||||
"Solution": instance.solution,
|
||||
"LP solution": instance.lp_solution,
|
||||
"Violated lazy constraints": instance.found_violated_lazy_constraints,
|
||||
#"Violated user cuts": instance.found_violated_user_cuts,
|
||||
"solver_results": solver_results,
|
||||
"solution": instance.solution,
|
||||
"lp_solution": instance.lp_solution,
|
||||
"found_violated_lazy_constraints": instance.found_violated_lazy_constraints,
|
||||
"found_violated_user_cuts": instance.found_violated_user_cuts,
|
||||
"slacks": instance.slacks
|
||||
}
|
||||
|
||||
|
||||
@@ -245,16 +252,17 @@ class LearningSolver:
|
||||
list(range(len(instances))),
|
||||
num_cpus=n_jobs,
|
||||
desc=label)
|
||||
results = [p["Results"] for p in p_map_results]
|
||||
results = [p["solver_results"] for p in p_map_results]
|
||||
for (idx, r) in enumerate(p_map_results):
|
||||
instances[idx].solution = r["Solution"]
|
||||
instances[idx].lp_solution = r["LP solution"]
|
||||
instances[idx].lp_value = r["Results"]["LP value"]
|
||||
instances[idx].lower_bound = r["Results"]["Lower bound"]
|
||||
instances[idx].upper_bound = r["Results"]["Upper bound"]
|
||||
instances[idx].found_violated_lazy_constraints = r["Violated lazy constraints"]
|
||||
#instances[idx].found_violated_user_cuts = r["Violated user cuts"]
|
||||
instances[idx].solver_log = r["Results"]["Log"]
|
||||
instances[idx].solution = r["solution"]
|
||||
instances[idx].lp_solution = r["lp_solution"]
|
||||
instances[idx].lp_value = r["solver_results"]["LP value"]
|
||||
instances[idx].lower_bound = r["solver_results"]["Lower bound"]
|
||||
instances[idx].upper_bound = r["solver_results"]["Upper bound"]
|
||||
instances[idx].found_violated_lazy_constraints = r["found_violated_lazy_constraints"]
|
||||
instances[idx].found_violated_user_cuts = r["found_violated_user_cuts"]
|
||||
instances[idx].slacks = r["slacks"]
|
||||
instances[idx].solver_log = r["solver_results"]["Log"]
|
||||
self._restore_miplearn_logger()
|
||||
return results
|
||||
|
||||
|
||||
@@ -244,3 +244,9 @@ class BasePyomoSolver(InternalSolver):
|
||||
@abstractmethod
|
||||
def _get_gap_tolerance_option_name(self):
|
||||
pass
|
||||
|
||||
def relax(self):
|
||||
raise Exception("not implemented")
|
||||
|
||||
def get_constraint_slacks(self):
|
||||
raise Exception("not implemented")
|
||||
Reference in New Issue
Block a user