parent
3c4045f64b
commit
1b6982ae8d
@ -0,0 +1,151 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from tqdm import tqdm
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RelaxationComponent(Component):
|
||||
"""
|
||||
A Component which builds a relaxation of the problem by dropping constraints.
|
||||
|
||||
Currently, this component drops all integrality constraints, as well as
|
||||
all inequality constraints which are not likely binding in the LP relaxation.
|
||||
In a future version of MIPLearn, this component may decide to keep some
|
||||
integrality constraints it it determines that they have small impact on
|
||||
running time, but large impact on dual bound.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
slack_tolerance=1e-5,
|
||||
):
|
||||
self.classifiers = {}
|
||||
self.classifier_prototype = classifier
|
||||
self.threshold = threshold
|
||||
self.slack_tolerance = slack_tolerance
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
logger.info("Relaxing integrality...")
|
||||
solver.internal_solver.relax()
|
||||
|
||||
logger.info("Predicting redundant LP constraints...")
|
||||
cids = solver.internal_solver.get_constraint_ids()
|
||||
x, constraints = self.x([instance],
|
||||
constraint_ids=cids,
|
||||
return_constraints=True)
|
||||
y = self.predict(x)
|
||||
n_removed = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
cid = constraints[category][i]
|
||||
solver.internal_solver.extract_constraint(cid)
|
||||
n_removed += 1
|
||||
logger.info("Removed %d predicted redundant LP constraints" % n_removed)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||
|
||||
def fit(self, training_instances):
|
||||
training_instances = [instance
|
||||
for instance in training_instances
|
||||
if hasattr(instance, "slacks")]
|
||||
logger.debug("Extracting x and y...")
|
||||
x = self.x(training_instances)
|
||||
y = self.y(training_instances)
|
||||
logger.debug("Fitting...")
|
||||
for category in tqdm(x.keys(),
|
||||
desc="Fit (relaxation)",
|
||||
disable=not sys.stdout.isatty()):
|
||||
if category not in self.classifiers:
|
||||
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
||||
self.classifiers[category].fit(x[category], y[category])
|
||||
|
||||
def x(self,
|
||||
instances,
|
||||
constraint_ids=None,
|
||||
return_constraints=False):
|
||||
x = {}
|
||||
constraints = {}
|
||||
for instance in instances:
|
||||
if constraint_ids is not None:
|
||||
cids = constraint_ids
|
||||
else:
|
||||
cids = instance.slacks.keys()
|
||||
for cid in cids:
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in x:
|
||||
x[category] = []
|
||||
constraints[category] = []
|
||||
x[category] += [instance.get_constraint_features(cid)]
|
||||
constraints[category] += [cid]
|
||||
if return_constraints:
|
||||
return x, constraints
|
||||
else:
|
||||
return x
|
||||
|
||||
def y(self, instances):
|
||||
y = {}
|
||||
for instance in instances:
|
||||
for (cid, slack) in instance.slacks.items():
|
||||
category = instance.get_constraint_category(cid)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in y:
|
||||
y[category] = []
|
||||
if slack > self.slack_tolerance:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def predict(self, x):
|
||||
y = {}
|
||||
for (category, x_cat) in x.items():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
y[category] = []
|
||||
#x_cat = np.array(x_cat)
|
||||
proba = self.classifiers[category].predict_proba(x_cat)
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] >= self.threshold:
|
||||
y[category] += [[1]]
|
||||
else:
|
||||
y[category] += [[0]]
|
||||
return y
|
||||
|
||||
def evaluate(self, instance):
|
||||
x = self.x([instance])
|
||||
y_true = self.y([instance])
|
||||
y_pred = self.predict(x)
|
||||
tp, tn, fp, fn = 0, 0, 0, 0
|
||||
for category in y_true.keys():
|
||||
for i in range(len(y_true[category])):
|
||||
if y_pred[category][i][0] == 1:
|
||||
if y_true[category][i][0] == 1:
|
||||
tp += 1
|
||||
else:
|
||||
fp += 1
|
||||
else:
|
||||
if y_true[category][i][0] == 1:
|
||||
fn += 1
|
||||
else:
|
||||
tn += 1
|
||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
|
||||
|
@ -0,0 +1,188 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import (RelaxationComponent,
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver)
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
|
||||
def test_usage_with_solver():
|
||||
solver = Mock(spec=LearningSolver)
|
||||
|
||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
|
||||
internal.get_constraint_slacks = Mock(side_effect=lambda: {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
"c3": 0.0,
|
||||
"c4": 1.4,
|
||||
})
|
||||
|
||||
instance = Mock(spec=Instance)
|
||||
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
}[cid])
|
||||
instance.get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
|
||||
component = RelaxationComponent()
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.02, 0.98],
|
||||
])
|
||||
|
||||
# LearningSolver calls before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
# Should relax integrality of the problem
|
||||
internal.relax.assert_called_once()
|
||||
|
||||
# Should query list of constraints
|
||||
internal.get_constraint_ids.assert_called_once()
|
||||
|
||||
# Should query category and features for each constraint in the model
|
||||
assert instance.get_constraint_category.call_count == 4
|
||||
instance.get_constraint_category.assert_has_calls([
|
||||
call("c1"), call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# For constraint with non-null categories, should ask for features
|
||||
assert instance.get_constraint_features.call_count == 3
|
||||
instance.get_constraint_features.assert_has_calls([
|
||||
call("c2"), call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# Should ask ML to predict whether constraint should be removed
|
||||
component.classifiers["type-a"].predict_proba.assert_called_once_with([[1.0, 0.0], [0.5, 0.5]])
|
||||
component.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
|
||||
|
||||
# Should ask internal solver to remove constraints predicted as redundant
|
||||
assert internal.extract_constraint.call_count == 2
|
||||
internal.extract_constraint.assert_has_calls([
|
||||
call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# LearningSolver calls after_solve
|
||||
component.after_solve(solver, instance, None, None)
|
||||
|
||||
# Should query slack for all constraints
|
||||
internal.get_constraint_slacks.assert_called_once()
|
||||
|
||||
# Should store constraint slacks in instance object
|
||||
assert hasattr(instance, "slacks")
|
||||
assert instance.slacks == {
|
||||
"c1": 0.5,
|
||||
"c2": 0.0,
|
||||
"c3": 0.0,
|
||||
"c4": 1.4,
|
||||
}
|
||||
|
||||
|
||||
def test_x_y_fit_predict_evaluate():
|
||||
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
||||
component = RelaxationComponent(slack_tolerance=0.05,
|
||||
threshold=0.80)
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.50, 0.50],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
|
||||
# First mock instance
|
||||
instances[0].slacks = {
|
||||
"c1": 0.00,
|
||||
"c2": 0.05,
|
||||
"c3": 0.00,
|
||||
"c4": 30.0,
|
||||
}
|
||||
instances[0].get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c2": "type-a",
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
instances[0].get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c2": [1.0, 0.0],
|
||||
"c3": [0.5, 0.5],
|
||||
"c4": [1.0],
|
||||
}[cid])
|
||||
|
||||
# Second mock instance
|
||||
instances[1].slacks = {
|
||||
"c1": 0.00,
|
||||
"c3": 0.30,
|
||||
"c4": 0.00,
|
||||
"c5": 0.00,
|
||||
}
|
||||
instances[1].get_constraint_category = Mock(side_effect=lambda cid: {
|
||||
"c1": None,
|
||||
"c3": "type-a",
|
||||
"c4": "type-b",
|
||||
"c5": "type-b",
|
||||
}[cid])
|
||||
instances[1].get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
"c3": [0.3, 0.4],
|
||||
"c4": [0.7],
|
||||
"c5": [0.8],
|
||||
}[cid])
|
||||
|
||||
expected_x = {
|
||||
"type-a": [[1.0, 0.0], [0.5, 0.5], [0.3, 0.4]],
|
||||
"type-b": [[1.0], [0.7], [0.8]],
|
||||
}
|
||||
expected_y = {
|
||||
"type-a": [[0], [0], [1]],
|
||||
"type-b": [[1], [0], [0]]
|
||||
}
|
||||
|
||||
# Should build X and Y matrices correctly
|
||||
assert component.x(instances) == expected_x
|
||||
assert component.y(instances) == expected_y
|
||||
|
||||
# Should pass along X and Y matrices to classifiers
|
||||
component.fit(instances)
|
||||
component.classifiers["type-a"].fit.assert_called_with(expected_x["type-a"], expected_y["type-a"])
|
||||
component.classifiers["type-b"].fit.assert_called_with(expected_x["type-b"], expected_y["type-b"])
|
||||
|
||||
assert component.predict(expected_x) == {
|
||||
"type-a": [[1]],
|
||||
"type-b": [[0], [1]]
|
||||
}
|
||||
|
||||
ev = component.evaluate(instances[1])
|
||||
assert ev["True positive"] == 1
|
||||
assert ev["True negative"] == 1
|
||||
assert ev["False positive"] == 1
|
||||
assert ev["False negative"] == 0
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in new issue