|
|
|
@ -149,21 +149,8 @@ def build_tsp_model_gurobipy(
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def lazy_separate(model: GurobiModel) -> List[Any]:
|
|
|
|
|
violations = []
|
|
|
|
|
x = model.inner.cbGetSolution(model.inner._x)
|
|
|
|
|
selected_edges = [e for e in model.inner._edges if x[e] > 0.5]
|
|
|
|
|
graph = nx.Graph()
|
|
|
|
|
graph.add_edges_from(selected_edges)
|
|
|
|
|
for component in list(nx.connected_components(graph)):
|
|
|
|
|
if len(component) < model.inner._n_cities:
|
|
|
|
|
cut_edges = tuple(
|
|
|
|
|
(e[0], e[1])
|
|
|
|
|
for e in model.inner._edges
|
|
|
|
|
if (e[0] in component and e[1] not in component)
|
|
|
|
|
or (e[0] not in component and e[1] in component)
|
|
|
|
|
)
|
|
|
|
|
violations.append(cut_edges)
|
|
|
|
|
return violations
|
|
|
|
|
x_val = model.inner.cbGetSolution(model.inner._x)
|
|
|
|
|
return _tsp_separate(x_val, edges, data.n_cities)
|
|
|
|
|
|
|
|
|
|
def lazy_enforce(model: GurobiModel, violations: List[Any]) -> None:
|
|
|
|
|
for violation in violations:
|
|
|
|
@ -212,22 +199,9 @@ def build_tsp_model_pyomo(
|
|
|
|
|
model.subtour_eqs = pe.ConstraintList()
|
|
|
|
|
|
|
|
|
|
def lazy_separate(m: PyomoModel) -> List[Any]:
|
|
|
|
|
violations = []
|
|
|
|
|
m.solver.cbGetSolution([model.x[e] for e in edges])
|
|
|
|
|
x_val = {e: model.x[e].value for e in edges}
|
|
|
|
|
selected_edges = [e for e in edges if x_val[e] > 0.5]
|
|
|
|
|
graph = nx.Graph()
|
|
|
|
|
graph.add_edges_from(selected_edges)
|
|
|
|
|
for component in list(nx.connected_components(graph)):
|
|
|
|
|
if len(component) < data.n_cities:
|
|
|
|
|
cut_edges = tuple(
|
|
|
|
|
(e[0], e[1])
|
|
|
|
|
for e in edges
|
|
|
|
|
if (e[0] in component and e[1] not in component)
|
|
|
|
|
or (e[0] not in component and e[1] in component)
|
|
|
|
|
)
|
|
|
|
|
violations.append(cut_edges)
|
|
|
|
|
return violations
|
|
|
|
|
return _tsp_separate(x_val, edges, data.n_cities)
|
|
|
|
|
|
|
|
|
|
def lazy_enforce(m: PyomoModel, violations: List[Any]) -> None:
|
|
|
|
|
logger.warning(f"Adding {len(violations)} subtour elimination constraints...")
|
|
|
|
@ -251,3 +225,24 @@ def _tsp_read(data: Union[str, TravelingSalesmanData]) -> TravelingSalesmanData:
|
|
|
|
|
data = read_pkl_gz(data)
|
|
|
|
|
assert isinstance(data, TravelingSalesmanData)
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _tsp_separate(
|
|
|
|
|
x_val: dict[Tuple[int, int], float],
|
|
|
|
|
edges: List[Tuple[int, int]],
|
|
|
|
|
n_cities: int,
|
|
|
|
|
) -> List[Tuple[Tuple[int, int], ...]]:
|
|
|
|
|
violations = []
|
|
|
|
|
selected_edges = [e for e in edges if x_val[e] > 0.5]
|
|
|
|
|
graph = nx.Graph()
|
|
|
|
|
graph.add_edges_from(selected_edges)
|
|
|
|
|
for component in list(nx.connected_components(graph)):
|
|
|
|
|
if len(component) < n_cities:
|
|
|
|
|
cut_edges = tuple(
|
|
|
|
|
(e[0], e[1])
|
|
|
|
|
for e in edges
|
|
|
|
|
if (e[0] in component and e[1] not in component)
|
|
|
|
|
or (e[0] not in component and e[1] in component)
|
|
|
|
|
)
|
|
|
|
|
violations.append(cut_edges)
|
|
|
|
|
return violations
|
|
|
|
|