mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Store cuts and lazy constraints as JSON in H5
This commit is contained in:
@@ -2,8 +2,9 @@
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import List, Dict, Any, Hashable, Union
|
||||
from typing import List, Dict, Any, Hashable
|
||||
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
@@ -15,6 +16,15 @@ from miplearn.solvers.abstract import AbstractModel
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def convert_lists_to_tuples(obj: Any) -> Any:
|
||||
if isinstance(obj, list):
|
||||
return tuple(convert_lists_to_tuples(item) for item in obj)
|
||||
elif isinstance(obj, dict):
|
||||
return {key: convert_lists_to_tuples(value) for key, value in obj.items()}
|
||||
else:
|
||||
return obj
|
||||
|
||||
|
||||
class _BaseMemorizingConstrComponent:
|
||||
def __init__(self, clf: Any, extractor: FeaturesExtractor, field: str) -> None:
|
||||
self.clf = clf
|
||||
@@ -38,8 +48,7 @@ class _BaseMemorizingConstrComponent:
|
||||
sample_constrs_str = h5.get_scalar(self.field)
|
||||
assert sample_constrs_str is not None
|
||||
assert isinstance(sample_constrs_str, str)
|
||||
sample_constrs = eval(sample_constrs_str)
|
||||
assert isinstance(sample_constrs, list)
|
||||
sample_constrs = convert_lists_to_tuples(json.loads(sample_constrs_str))
|
||||
y_sample = []
|
||||
for c in sample_constrs:
|
||||
if c not in constr_to_idx:
|
||||
|
||||
@@ -170,11 +170,11 @@ def _stab_read(data: Union[str, MaxWeightStableSetData]) -> MaxWeightStableSetDa
|
||||
return data
|
||||
|
||||
|
||||
def _stab_separate(data: MaxWeightStableSetData, x_val: List[float]) -> List[Hashable]:
|
||||
def _stab_separate(data: MaxWeightStableSetData, x_val: List[float]) -> List:
|
||||
# Check that we selected at most one vertex for each
|
||||
# clique in the graph (sum <= 1)
|
||||
violations: List[Hashable] = []
|
||||
violations: List[Any] = []
|
||||
for clique in nx.find_cliques(data.graph):
|
||||
if sum(x_val[i] for i in clique) > 1.0001:
|
||||
violations.append(tuple(sorted(clique)))
|
||||
violations.append(sorted(clique))
|
||||
return violations
|
||||
|
||||
@@ -231,18 +231,18 @@ def _tsp_separate(
|
||||
x_val: dict[Tuple[int, int], float],
|
||||
edges: List[Tuple[int, int]],
|
||||
n_cities: int,
|
||||
) -> List[Tuple[Tuple[int, int], ...]]:
|
||||
) -> List:
|
||||
violations = []
|
||||
selected_edges = [e for e in edges if x_val[e] > 0.5]
|
||||
graph = nx.Graph()
|
||||
graph.add_edges_from(selected_edges)
|
||||
for component in list(nx.connected_components(graph)):
|
||||
if len(component) < n_cities:
|
||||
cut_edges = tuple(
|
||||
(e[0], e[1])
|
||||
cut_edges = [
|
||||
[e[0], e[1]]
|
||||
for e in edges
|
||||
if (e[0] in component and e[1] not in component)
|
||||
or (e[0] not in component and e[1] in component)
|
||||
)
|
||||
]
|
||||
violations.append(cut_edges)
|
||||
return violations
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import json
|
||||
from typing import Dict, Optional, Callable, Any, List
|
||||
|
||||
import gurobipy as gp
|
||||
@@ -167,9 +169,9 @@ class GurobiModel(AbstractModel):
|
||||
pass
|
||||
self._extract_after_mip_solution_pool(h5)
|
||||
if self.lazy_ is not None:
|
||||
h5.put_scalar("mip_lazy", repr(self.lazy_))
|
||||
h5.put_scalar("mip_lazy", json.dumps(self.lazy_))
|
||||
if self.cuts_ is not None:
|
||||
h5.put_scalar("mip_cuts", repr(self.cuts_))
|
||||
h5.put_scalar("mip_cuts", json.dumps(self.cuts_))
|
||||
|
||||
def fix_variables(
|
||||
self,
|
||||
|
||||
Reference in New Issue
Block a user