mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
BenchmarkRunner: save and load results
This commit is contained in:
@@ -19,11 +19,12 @@ class BenchmarkRunner:
|
||||
solver.fit()
|
||||
|
||||
def parallel_solve(self, instances, n_jobs=1):
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Optimal Value",
|
||||
])
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Obj Value",
|
||||
])
|
||||
for (name, solver) in self.solvers.items():
|
||||
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
|
||||
for i in range(len(instances)):
|
||||
@@ -38,8 +39,21 @@ class BenchmarkRunner:
|
||||
"Solver": name,
|
||||
"Instance": i,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Optimal Value": results[i]["Problem"][0]["Lower bound"]
|
||||
"Obj Value": results[i]["Problem"][0]["Lower bound"]
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_obj_value = groups["Obj Value"].transform("max")
|
||||
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
||||
self.results["Relative Obj Value"] = \
|
||||
self.results["Obj Value"] / best_obj_value
|
||||
self.results["Relative Wallclock Time"] = \
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
return self.results
|
||||
|
||||
def save_results(self, filename):
|
||||
self.results.to_csv(filename)
|
||||
|
||||
def load_results(self, filename):
|
||||
self.results = pd.read_csv(filename, index_col=0)
|
||||
@@ -8,6 +8,7 @@ from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
import os.path
|
||||
|
||||
|
||||
def test_benchmark():
|
||||
@@ -38,4 +39,11 @@ def test_benchmark():
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_fit("data.bin")
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2)
|
||||
print(benchmark.raw_results())
|
||||
assert benchmark.raw_results().values.shape == (6,6)
|
||||
|
||||
benchmark.save_results("/tmp/benchmark.csv")
|
||||
assert os.path.isfile("/tmp/benchmark.csv")
|
||||
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_results("/tmp/benchmark.csv")
|
||||
assert benchmark.raw_results().values.shape == (6,6)
|
||||
|
||||
Reference in New Issue
Block a user