commit
3ef1733334
@ -0,0 +1,73 @@
|
|||||||
|
*$py.class
|
||||||
|
*.cover
|
||||||
|
*.egg
|
||||||
|
*.egg-info/
|
||||||
|
*.log
|
||||||
|
*.manifest
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
*.py,cover
|
||||||
|
*.py[cod]
|
||||||
|
*.sage.py
|
||||||
|
*.so
|
||||||
|
*.spec
|
||||||
|
.Python
|
||||||
|
.cache
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.dmypy.json
|
||||||
|
.eggs/
|
||||||
|
.env
|
||||||
|
.hypothesis/
|
||||||
|
.installed.cfg
|
||||||
|
.ipynb_checkpoints
|
||||||
|
.mypy_cache/
|
||||||
|
.nox/
|
||||||
|
.pyre/
|
||||||
|
.pytest_cache/
|
||||||
|
.python-version
|
||||||
|
.ropeproject
|
||||||
|
.scrapy
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
.tox/
|
||||||
|
.venv
|
||||||
|
.webassets-cache
|
||||||
|
/site
|
||||||
|
ENV/
|
||||||
|
MANIFEST
|
||||||
|
__pycache__/
|
||||||
|
__pypackages__/
|
||||||
|
build/
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
coverage.xml
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
dmypy.json
|
||||||
|
docs/_build/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
env.bak/
|
||||||
|
env/
|
||||||
|
htmlcov/
|
||||||
|
instance/
|
||||||
|
ipython_config.py
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
local_settings.py
|
||||||
|
nosetests.xml
|
||||||
|
parts/
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
pip-log.txt
|
||||||
|
pip-wheel-metadata/
|
||||||
|
profile_default/
|
||||||
|
sdist/
|
||||||
|
share/python-wheels/
|
||||||
|
target/
|
||||||
|
var/
|
||||||
|
venv.bak/
|
||||||
|
venv/
|
||||||
|
wheels/
|
@ -0,0 +1,3 @@
|
|||||||
|
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
@ -0,0 +1,41 @@
|
|||||||
|
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
class Parameters(ABC):
|
||||||
|
"""
|
||||||
|
Abstract class for holding the data that distinguishes one relevant instance of the problem
|
||||||
|
from another.
|
||||||
|
|
||||||
|
In the knapsack problem, for example, this class could hold the number of items, their weights
|
||||||
|
and costs, as well as the size of the knapsack. Objects implementing this class are able to
|
||||||
|
convert themselves into concrete optimization model, which can be solved by a MIPSolver, or
|
||||||
|
into 1-dimensional numpy arrays, which can be given to a machine learning model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def to_model(self):
|
||||||
|
"""
|
||||||
|
Convert the parameters into a concrete optimization model.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def to_array(self):
|
||||||
|
"""
|
||||||
|
Convert the parameters into a 1-dimensional array.
|
||||||
|
|
||||||
|
The array is used by the LearningEnhancedSolver to determine how similar two instances are.
|
||||||
|
After some normalization or embedding, it may also be used as input to the machine learning
|
||||||
|
models. It must be numerical.
|
||||||
|
|
||||||
|
There is not necessarily a one-to-one correspondence between parameters and arrays. The
|
||||||
|
array may encode only part of the data necessary to generate a concrete optimization model.
|
||||||
|
The entries may also be reductions on the original data. For example, in the knapsack
|
||||||
|
problem, an implementation may decide to encode only the average weights, the average prices
|
||||||
|
and the size of the knapsack. This technique may be used to guarantee that arrays
|
||||||
|
correponding to instances of different sizes have the same dimension.
|
||||||
|
"""
|
||||||
|
pass
|
@ -0,0 +1,25 @@
|
|||||||
|
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
import pyomo.environ as pe
|
||||||
|
|
||||||
|
class LearningSolver:
|
||||||
|
"""
|
||||||
|
LearningSolver is a Mixed-Integer Linear Programming (MIP) solver that uses information from
|
||||||
|
previous runs to accelerate the solution of new, unseen instances.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.parent_solver = pe.SolverFactory('cplex_persistent')
|
||||||
|
self.parent_solver.options["threads"] = 4
|
||||||
|
|
||||||
|
def solve(self, params):
|
||||||
|
"""
|
||||||
|
Solve the optimization problem represented by the given parameters.
|
||||||
|
The parameters and the obtained solution is recorded.
|
||||||
|
"""
|
||||||
|
model = params.to_model()
|
||||||
|
self.parent_solver.set_instance(model)
|
||||||
|
self.parent_solver.solve(tee=True)
|
||||||
|
|
@ -0,0 +1,51 @@
|
|||||||
|
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from .solvers import LearningSolver
|
||||||
|
from .core import Parameters
|
||||||
|
import numpy as np
|
||||||
|
import pyomo.environ as pe
|
||||||
|
import networkx as nx
|
||||||
|
|
||||||
|
|
||||||
|
class MaxStableSetGenerator:
|
||||||
|
"""Class that generates random instances of the Maximum Stable Set (MSS) Problem."""
|
||||||
|
|
||||||
|
def __init__(self, n_vertices, density=0.1, seed=42):
|
||||||
|
self.graph = nx.generators.random_graphs.binomial_graph(n_vertices, density, seed)
|
||||||
|
self.base_weights = np.random.rand(self.graph.number_of_nodes()) * 10
|
||||||
|
|
||||||
|
def generate(self):
|
||||||
|
perturbation = np.random.rand(self.graph.number_of_nodes()) * 0.1
|
||||||
|
weights = self.base_weights + perturbation
|
||||||
|
return MaxStableSetParameters(self.graph, weights)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxStableSetParameters(Parameters):
|
||||||
|
def __init__(self, graph, weights):
|
||||||
|
self.graph = graph
|
||||||
|
self.weights = weights
|
||||||
|
|
||||||
|
def to_model(self):
|
||||||
|
nodes = list(self.graph.nodes)
|
||||||
|
edges = list(self.graph.edges)
|
||||||
|
model = m = pe.ConcreteModel()
|
||||||
|
m.x = pe.Var(nodes, domain=pe.Binary)
|
||||||
|
m.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
|
||||||
|
sense=pe.maximize)
|
||||||
|
m.edge_eqs = pe.ConstraintList()
|
||||||
|
for edge in edges:
|
||||||
|
m.edge_eqs.add(m.x[edge[0]] + m.x[edge[1]] <= 1)
|
||||||
|
return m
|
||||||
|
|
||||||
|
def to_array(self):
|
||||||
|
return self.weights
|
||||||
|
|
||||||
|
|
||||||
|
def test_stab():
|
||||||
|
generator = MaxStableSetGenerator(n_vertices=100)
|
||||||
|
for k in range(5):
|
||||||
|
params = generator.generate()
|
||||||
|
solver = LearningSolver()
|
||||||
|
solver.solve(params)
|
@ -0,0 +1,11 @@
|
|||||||
|
from setuptools import setup
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name='miplearn',
|
||||||
|
version='0.1',
|
||||||
|
description='A Machine-Learning Framework for Mixed-Integer Optimization',
|
||||||
|
author='Alinson S. Xavier',
|
||||||
|
author_email='axavier@anl.gov',
|
||||||
|
packages=['miplearn'],
|
||||||
|
install_requires=['pyomo'],
|
||||||
|
)
|
Loading…
Reference in new issue