mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 17:38:51 -06:00
Flip dict levels produced by PrimalSolutionComponent.evaluate
This commit is contained in:
@@ -18,6 +18,7 @@ class PrimalSolutionComponent(Component):
|
|||||||
"""
|
"""
|
||||||
A component that predicts primal solutions.
|
A component that predicts primal solutions.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
classifier=AdaptiveClassifier(),
|
classifier=AdaptiveClassifier(),
|
||||||
mode="exact",
|
mode="exact",
|
||||||
@@ -113,7 +114,8 @@ class PrimalSolutionComponent(Component):
|
|||||||
return solution
|
return solution
|
||||||
|
|
||||||
def evaluate(self, instances):
|
def evaluate(self, instances):
|
||||||
ev = {}
|
ev = {"Fix zero": {},
|
||||||
|
"Fix one": {}}
|
||||||
for instance_idx in tqdm(range(len(instances))):
|
for instance_idx in tqdm(range(len(instances))):
|
||||||
instance = instances[instance_idx]
|
instance = instances[instance_idx]
|
||||||
solution_actual = instance.solution
|
solution_actual = instance.solution
|
||||||
@@ -146,8 +148,6 @@ class PrimalSolutionComponent(Component):
|
|||||||
tn_one = len(pred_one_negative & vars_zero)
|
tn_one = len(pred_one_negative & vars_zero)
|
||||||
fn_one = len(pred_one_negative & vars_one)
|
fn_one = len(pred_one_negative & vars_one)
|
||||||
|
|
||||||
ev[instance_idx] = {
|
ev["Fix zero"][instance_idx] = classifier_evaluation_dict(tp_zero, tn_zero, fp_zero, fn_zero)
|
||||||
"Fix zero": classifier_evaluation_dict(tp_zero, tn_zero, fp_zero, fn_zero),
|
ev["Fix one"][instance_idx] = classifier_evaluation_dict(tp_one, tn_one, fp_one, fn_one)
|
||||||
"Fix one": classifier_evaluation_dict(tp_one, tn_one, fp_one, fn_one),
|
|
||||||
}
|
|
||||||
return ev
|
return ev
|
||||||
|
|||||||
@@ -50,7 +50,7 @@ def test_evaluate():
|
|||||||
2: 1,
|
2: 1,
|
||||||
3: 1}}
|
3: 1}}
|
||||||
ev = comp.evaluate(instances[:1])
|
ev = comp.evaluate(instances[:1])
|
||||||
assert ev == {0: {'Fix one': {'Accuracy': 0.5,
|
assert ev == {'Fix one': {0: {'Accuracy': 0.5,
|
||||||
'Condition negative': 1,
|
'Condition negative': 1,
|
||||||
'Condition negative (%)': 25.0,
|
'Condition negative (%)': 25.0,
|
||||||
'Condition positive': 3,
|
'Condition positive': 3,
|
||||||
@@ -69,8 +69,8 @@ def test_evaluate():
|
|||||||
'True negative': 1,
|
'True negative': 1,
|
||||||
'True negative (%)': 25.0,
|
'True negative (%)': 25.0,
|
||||||
'True positive': 1,
|
'True positive': 1,
|
||||||
'True positive (%)': 25.0},
|
'True positive (%)': 25.0}},
|
||||||
'Fix zero': {'Accuracy': 0.75,
|
'Fix zero': {0: {'Accuracy': 0.75,
|
||||||
'Condition negative': 3,
|
'Condition negative': 3,
|
||||||
'Condition negative (%)': 75.0,
|
'Condition negative (%)': 75.0,
|
||||||
'Condition positive': 1,
|
'Condition positive': 1,
|
||||||
|
|||||||
Reference in New Issue
Block a user