Combine np.ndarray conversion with rounding

master
Alinson S. Xavier 4 years ago
parent 34c71796e1
commit 52093eb1c0
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -15,24 +15,6 @@ inf = float("inf")
# This file is in the main source folder, so that it can be called from Julia.
def _round(obj: Any) -> Any:
if obj is None:
return None
if isinstance(obj, float):
return round(obj, 6)
if isinstance(obj, tuple):
return tuple([_round(v) for v in obj])
if isinstance(obj, list):
return [_round(v) for v in obj]
if isinstance(obj, dict):
return {key: _round(value) for (key, value) in obj.items()}
if isinstance(obj, VariableFeatures):
obj.__dict__ = _round(obj.__dict__)
if isinstance(obj, ConstraintFeatures):
obj.__dict__ = _round(obj.__dict__)
return obj
def _filter_attrs(allowed_keys: List[str], obj: Any) -> Any:
for key in obj.__dict__.keys():
if key not in allowed_keys:
@ -98,7 +80,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Fetch variables (after-lp)
assert_equals(
_round(solver.get_variables(with_static=False)),
solver.get_variables(with_static=False),
_filter_attrs(
solver.get_variable_attrs(),
VariableFeatures(
@ -118,7 +100,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Fetch constraints (after-lp)
assert_equals(
_round(solver.get_constraints(with_static=False)),
solver.get_constraints(with_static=False),
_filter_attrs(
solver.get_constraint_attrs(),
ConstraintFeatures(
@ -151,7 +133,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Fetch variables (after-mip)
assert_equals(
_round(solver.get_variables(with_static=False)),
solver.get_variables(with_static=False),
_filter_attrs(
solver.get_variable_attrs(),
VariableFeatures(
@ -163,7 +145,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Fetch constraints (after-mip)
assert_equals(
_round(solver.get_constraints(with_static=False)),
solver.get_constraints(with_static=False),
_filter_attrs(
solver.get_constraint_attrs(),
ConstraintFeatures(
@ -185,7 +167,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Add constraint and verify it affects solution
solver.add_constraints(cf)
assert_equals(
_round(solver.get_constraints(with_static=True)),
solver.get_constraints(with_static=True),
_filter_attrs(
solver.get_constraint_attrs(),
ConstraintFeatures(
@ -283,26 +265,28 @@ def run_lazy_cb_tests(solver: InternalSolver) -> None:
assert_equals(solution["x[0]"], 0.0)
def _recursive_convert_ndarray_to_list(obj: Any) -> Any:
def _equals_preprocess(obj: Any) -> Any:
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, (int, float, str)):
return np.round(obj, decimals=6).tolist()
elif isinstance(obj, (int, str)):
return obj
elif isinstance(obj, float):
return round(obj, 6)
elif isinstance(obj, list):
return [_recursive_convert_ndarray_to_list(i) for i in obj]
return [_equals_preprocess(i) for i in obj]
elif isinstance(obj, tuple):
return tuple(_recursive_convert_ndarray_to_list(i) for i in obj)
return tuple(_equals_preprocess(i) for i in obj)
elif obj is None:
return None
elif isinstance(obj, dict):
return {k: _recursive_convert_ndarray_to_list(v) for (k, v) in obj.items()}
return {k: _equals_preprocess(v) for (k, v) in obj.items()}
else:
for key in obj.__dict__.keys():
obj.__dict__[key] = _recursive_convert_ndarray_to_list(obj.__dict__[key])
obj.__dict__[key] = _equals_preprocess(obj.__dict__[key])
return obj
def assert_equals(left: Any, right: Any) -> None:
left = _recursive_convert_ndarray_to_list(left)
right = _recursive_convert_ndarray_to_list(right)
left = _equals_preprocess(left)
right = _equals_preprocess(right)
assert left == right, f"left:\n{left}\nright:\n{right}"

@ -16,8 +16,8 @@ from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.learning import LearningSolver
# noinspection PyUnresolvedReferences
from miplearn.solvers.tests import _round
from tests.solvers.test_internal_solver import internal_solvers
from miplearn.solvers.tests import assert_equals
logger = logging.getLogger(__name__)
@ -51,7 +51,7 @@ def test_learning_solver(
after_lp = sample.after_lp
assert after_lp is not None
assert after_lp.variables is not None
assert _round(after_lp.variables.values) == [1.0, 0.923077, 1.0, 0.0, 67.0]
assert_equals(after_lp.variables.values, [1.0, 0.923077, 1.0, 0.0, 67.0])
assert after_lp.lp_solve is not None
assert after_lp.lp_solve.lp_value is not None
assert round(after_lp.lp_solve.lp_value, 3) == 1287.923

@ -2,6 +2,8 @@
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from miplearn.features import (
FeaturesExtractor,
InstanceFeatures,
@ -9,11 +11,7 @@ from miplearn.features import (
ConstraintFeatures,
)
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.tests import (
assert_equals,
_round,
)
import numpy as np
from miplearn.solvers.tests import assert_equals
inf = float("inf")
@ -30,7 +28,7 @@ def test_knapsack() -> None:
assert features.instance is not None
assert_equals(
_round(features.variables),
features.variables,
VariableFeatures(
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
basis_status=["U", "B", "U", "L", "U"],
@ -64,7 +62,7 @@ def test_knapsack() -> None:
),
)
assert_equals(
_round(features.constraints),
features.constraints,
ConstraintFeatures(
basis_status=["N"],
categories=["eq_capacity"],

Loading…
Cancel
Save