Remove PerVariableTransformer

pull/1/head
Alinson S. Xavier 6 years ago
parent 5750b4c98d
commit 52b476f0a3

@ -3,13 +3,10 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from . import Component
from .transformers import PerVariableTransformer
from .extractors import Extractor
from abc import ABC, abstractmethod
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
from p_tqdm import p_map
from tqdm.auto import tqdm
from joblib import Parallel, delayed
import multiprocessing
@ -18,7 +15,6 @@ class BranchPriorityComponent(Component):
def __init__(self,
node_limit=1_000,
):
self.transformer = PerVariableTransformer()
self.pending_instances = []
self.x_train = {}
self.y_train = {}
@ -28,7 +24,7 @@ class BranchPriorityComponent(Component):
def before_solve(self, solver, instance, model):
assert solver.is_persistent, "BranchPriorityComponent requires a persistent solver"
from gurobipy import GRB
var_split = self.transformer.split_variables(instance, model)
var_split = Extractor.split_variables(instance, model)
for category in var_split.keys():
if category not in self.predictors.keys():
continue

@ -1,65 +0,0 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
import numpy as np
from pyomo.core import Var
class PerVariableTransformer:
"""
Class that converts a miplearn.Instance into a matrix of features that is suitable
for training machine learning models that make one decision per decision variable.
"""
def __init__(self):
pass
def transform_instance(self, instance, var_index_pairs):
instance_features = self._get_instance_features(instance)
variable_features = self._get_variable_features(instance, var_index_pairs)
return np.vstack([
np.hstack([instance_features, vf])
for vf in variable_features
])
@staticmethod
def _get_instance_features(instance):
features = instance.get_instance_features()
assert isinstance(features, np.ndarray)
return features
@staticmethod
def _get_variable_features(instance, var_index_pairs):
features = []
expected_shape = None
for (var, index) in var_index_pairs:
vf = instance.get_variable_features(var, index)
assert isinstance(vf, np.ndarray)
if expected_shape is None:
assert len(vf.shape) == 1
expected_shape = vf.shape
else:
assert vf.shape == expected_shape
features += [vf]
return np.array(features)
@staticmethod
def transform_solution(var_index_pairs):
y = []
for (var, index) in var_index_pairs:
y += [[1 - var[index].value, var[index].value]]
return np.array(y)
@staticmethod
def split_variables(instance, model):
result = {}
for var in model.component_objects(Var):
for index in var:
category = instance.get_variable_category(var, index)
if category is None:
continue
if category not in result.keys():
result[category] = []
result[category] += [(var, index)]
return result

@ -3,7 +3,6 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from . import Component
from .transformers import PerVariableTransformer
from .extractors import *
from abc import ABC, abstractmethod
@ -134,7 +133,6 @@ class WarmStartComponent(Component):
mode="exact",
):
self.mode = mode
self.transformer = PerVariableTransformer()
self.x_train = {}
self.y_train = {}
self.predictors = {}

Loading…
Cancel
Save