mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Finish DynamicLazyConstraintsComponent rewrite
This commit is contained in:
@@ -6,181 +6,22 @@ from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.linalg import norm
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from miplearn import Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from miplearn.features import (
|
||||
TrainingSample,
|
||||
Features,
|
||||
ConstraintFeatures,
|
||||
InstanceFeatures,
|
||||
)
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||
|
||||
E = 0.1
|
||||
|
||||
|
||||
def test_lazy_fit():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
instances[0].found_violated_lazy_constraints = ["a", "b"]
|
||||
instances[1].found_violated_lazy_constraints = ["b", "c"]
|
||||
classifier = Mock(spec=Classifier)
|
||||
classifier.clone = lambda: Mock(spec=Classifier)
|
||||
component = DynamicLazyConstraintsComponent(classifier=classifier)
|
||||
|
||||
component.fit(instances)
|
||||
|
||||
# Should create one classifier for each violation
|
||||
assert "a" in component.classifiers
|
||||
assert "b" in component.classifiers
|
||||
assert "c" in component.classifiers
|
||||
|
||||
# Should provide correct x_train to each classifier
|
||||
expected_x_train_a = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
||||
expected_x_train_b = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
||||
expected_x_train_c = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
||||
actual_x_train_a = component.classifiers["a"].fit.call_args[0][0]
|
||||
actual_x_train_b = component.classifiers["b"].fit.call_args[0][0]
|
||||
actual_x_train_c = component.classifiers["c"].fit.call_args[0][0]
|
||||
assert norm(expected_x_train_a - actual_x_train_a) < E
|
||||
assert norm(expected_x_train_b - actual_x_train_b) < E
|
||||
assert norm(expected_x_train_c - actual_x_train_c) < E
|
||||
|
||||
# Should provide correct y_train to each classifier
|
||||
expected_y_train_a = np.array(
|
||||
[
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
)
|
||||
expected_y_train_b = np.array(
|
||||
[
|
||||
[False, True],
|
||||
[False, True],
|
||||
]
|
||||
)
|
||||
expected_y_train_c = np.array(
|
||||
[
|
||||
[True, False],
|
||||
[False, True],
|
||||
]
|
||||
)
|
||||
assert_array_equal(
|
||||
component.classifiers["a"].fit.call_args[0][1],
|
||||
expected_y_train_a,
|
||||
)
|
||||
assert_array_equal(
|
||||
component.classifiers["b"].fit.call_args[0][1],
|
||||
expected_y_train_b,
|
||||
)
|
||||
assert_array_equal(
|
||||
component.classifiers["c"].fit.call_args[0][1],
|
||||
expected_y_train_c,
|
||||
)
|
||||
|
||||
|
||||
def test_lazy_before():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
instances[0].build_lazy_constraint = Mock(return_value="c1")
|
||||
solver = LearningSolver()
|
||||
solver.internal_solver = Mock(spec=InternalSolver)
|
||||
component = DynamicLazyConstraintsComponent(threshold=0.10)
|
||||
component.classifiers = {"a": Mock(spec=Classifier), "b": Mock(spec=Classifier)}
|
||||
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
|
||||
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
|
||||
|
||||
component.before_solve_mip(
|
||||
solver=solver,
|
||||
instance=instances[0],
|
||||
model=models[0],
|
||||
stats=None,
|
||||
features=None,
|
||||
training_data=None,
|
||||
)
|
||||
|
||||
# Should ask classifier likelihood of each constraint being violated
|
||||
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
|
||||
expected_x_test_b = np.array([[67.0, 21.75, 1287.92]])
|
||||
actual_x_test_a = component.classifiers["a"].predict_proba.call_args[0][0]
|
||||
actual_x_test_b = component.classifiers["b"].predict_proba.call_args[0][0]
|
||||
assert norm(expected_x_test_a - actual_x_test_a) < E
|
||||
assert norm(expected_x_test_b - actual_x_test_b) < E
|
||||
|
||||
# Should ask instance to generate cut for constraints whose likelihood
|
||||
# of being violated exceeds the threshold
|
||||
instances[0].build_lazy_constraint.assert_called_once_with(models[0], "b")
|
||||
|
||||
# Should ask internal solver to add generated constraint
|
||||
solver.internal_solver.add_constraint.assert_called_once_with("c1")
|
||||
|
||||
|
||||
def test_lazy_evaluate():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
component = DynamicLazyConstraintsComponent()
|
||||
component.classifiers = {
|
||||
"a": Mock(spec=Classifier),
|
||||
"b": Mock(spec=Classifier),
|
||||
"c": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["a"].predict_proba = Mock(return_value=[[1.0, 0.0]])
|
||||
component.classifiers["b"].predict_proba = Mock(return_value=[[0.0, 1.0]])
|
||||
component.classifiers["c"].predict_proba = Mock(return_value=[[0.0, 1.0]])
|
||||
|
||||
instances[0].found_violated_lazy_constraints = ["a", "b", "c"]
|
||||
instances[1].found_violated_lazy_constraints = ["b", "d"]
|
||||
assert component.evaluate(instances) == {
|
||||
0: {
|
||||
"Accuracy": 0.75,
|
||||
"F1 score": 0.8,
|
||||
"Precision": 1.0,
|
||||
"Recall": 2 / 3.0,
|
||||
"Predicted positive": 2,
|
||||
"Predicted negative": 2,
|
||||
"Condition positive": 3,
|
||||
"Condition negative": 1,
|
||||
"False negative": 1,
|
||||
"False positive": 0,
|
||||
"True negative": 1,
|
||||
"True positive": 2,
|
||||
"Predicted positive (%)": 50.0,
|
||||
"Predicted negative (%)": 50.0,
|
||||
"Condition positive (%)": 75.0,
|
||||
"Condition negative (%)": 25.0,
|
||||
"False negative (%)": 25.0,
|
||||
"False positive (%)": 0,
|
||||
"True negative (%)": 25.0,
|
||||
"True positive (%)": 50.0,
|
||||
},
|
||||
1: {
|
||||
"Accuracy": 0.5,
|
||||
"F1 score": 0.5,
|
||||
"Precision": 0.5,
|
||||
"Recall": 0.5,
|
||||
"Predicted positive": 2,
|
||||
"Predicted negative": 2,
|
||||
"Condition positive": 2,
|
||||
"Condition negative": 2,
|
||||
"False negative": 1,
|
||||
"False positive": 1,
|
||||
"True negative": 1,
|
||||
"True positive": 1,
|
||||
"Predicted positive (%)": 50.0,
|
||||
"Predicted negative (%)": 50.0,
|
||||
"Condition positive (%)": 50.0,
|
||||
"Condition negative (%)": 50.0,
|
||||
"False negative (%)": 25.0,
|
||||
"False positive (%)": 25.0,
|
||||
"True negative (%)": 25.0,
|
||||
"True positive (%)": 25.0,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def training_instances() -> List[Instance]:
|
||||
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
||||
@@ -235,11 +76,11 @@ def training_instances() -> List[Instance]:
|
||||
return instances
|
||||
|
||||
|
||||
def test_fit_new(training_instances: List[Instance]) -> None:
|
||||
def test_fit(training_instances: List[Instance]) -> None:
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
||||
comp.fit_new(training_instances)
|
||||
comp.fit(training_instances)
|
||||
assert clf.clone.call_count == 2
|
||||
|
||||
assert "type-a" in comp.classifiers
|
||||
@@ -299,3 +140,32 @@ def test_fit_new(training_instances: List[Instance]) -> None:
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
||||
comp = DynamicLazyConstraintsComponent()
|
||||
comp.known_cids = ["c1", "c2", "c3", "c4"]
|
||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.classifiers["type-a"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-b"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
|
||||
)
|
||||
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
|
||||
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
||||
)
|
||||
pred = comp.sample_predict(
|
||||
training_instances[0],
|
||||
training_instances[0].training_data[0],
|
||||
)
|
||||
assert pred == ["c1", "c4"]
|
||||
ev = comp.sample_evaluate(
|
||||
training_instances[0],
|
||||
training_instances[0].training_data[0],
|
||||
)
|
||||
print(ev)
|
||||
assert ev == {
|
||||
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
|
||||
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
|
||||
}
|
||||
|
||||
@@ -66,7 +66,7 @@ def test_subtour():
|
||||
instance = TravelingSalesmanInstance(n_cities, distances)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
assert hasattr(instance, "found_violated_lazy_constraints")
|
||||
assert len(instance.training_data[0].lazy_enforced) > 0
|
||||
assert hasattr(instance, "found_violated_user_cuts")
|
||||
x = instance.training_data[0].solution["x"]
|
||||
assert x[0, 1] == 1.0
|
||||
|
||||
Reference in New Issue
Block a user