Finish DynamicLazyConstraintsComponent rewrite

This commit is contained in:
2021-04-06 08:19:29 -05:00
parent c6aee4f90d
commit 54c20382c9
4 changed files with 175 additions and 277 deletions

View File

@@ -6,181 +6,22 @@ from unittest.mock import Mock
import numpy as np
import pytest
from numpy.linalg import norm
from numpy.testing import assert_array_equal
from miplearn import Instance
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
from miplearn.features import (
TrainingSample,
Features,
ConstraintFeatures,
InstanceFeatures,
)
from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.learning import LearningSolver
from tests.fixtures.knapsack import get_test_pyomo_instances
E = 0.1
def test_lazy_fit():
instances, models = get_test_pyomo_instances()
instances[0].found_violated_lazy_constraints = ["a", "b"]
instances[1].found_violated_lazy_constraints = ["b", "c"]
classifier = Mock(spec=Classifier)
classifier.clone = lambda: Mock(spec=Classifier)
component = DynamicLazyConstraintsComponent(classifier=classifier)
component.fit(instances)
# Should create one classifier for each violation
assert "a" in component.classifiers
assert "b" in component.classifiers
assert "c" in component.classifiers
# Should provide correct x_train to each classifier
expected_x_train_a = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
expected_x_train_b = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
expected_x_train_c = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
actual_x_train_a = component.classifiers["a"].fit.call_args[0][0]
actual_x_train_b = component.classifiers["b"].fit.call_args[0][0]
actual_x_train_c = component.classifiers["c"].fit.call_args[0][0]
assert norm(expected_x_train_a - actual_x_train_a) < E
assert norm(expected_x_train_b - actual_x_train_b) < E
assert norm(expected_x_train_c - actual_x_train_c) < E
# Should provide correct y_train to each classifier
expected_y_train_a = np.array(
[
[False, True],
[True, False],
]
)
expected_y_train_b = np.array(
[
[False, True],
[False, True],
]
)
expected_y_train_c = np.array(
[
[True, False],
[False, True],
]
)
assert_array_equal(
component.classifiers["a"].fit.call_args[0][1],
expected_y_train_a,
)
assert_array_equal(
component.classifiers["b"].fit.call_args[0][1],
expected_y_train_b,
)
assert_array_equal(
component.classifiers["c"].fit.call_args[0][1],
expected_y_train_c,
)
def test_lazy_before():
instances, models = get_test_pyomo_instances()
instances[0].build_lazy_constraint = Mock(return_value="c1")
solver = LearningSolver()
solver.internal_solver = Mock(spec=InternalSolver)
component = DynamicLazyConstraintsComponent(threshold=0.10)
component.classifiers = {"a": Mock(spec=Classifier), "b": Mock(spec=Classifier)}
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
component.before_solve_mip(
solver=solver,
instance=instances[0],
model=models[0],
stats=None,
features=None,
training_data=None,
)
# Should ask classifier likelihood of each constraint being violated
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
expected_x_test_b = np.array([[67.0, 21.75, 1287.92]])
actual_x_test_a = component.classifiers["a"].predict_proba.call_args[0][0]
actual_x_test_b = component.classifiers["b"].predict_proba.call_args[0][0]
assert norm(expected_x_test_a - actual_x_test_a) < E
assert norm(expected_x_test_b - actual_x_test_b) < E
# Should ask instance to generate cut for constraints whose likelihood
# of being violated exceeds the threshold
instances[0].build_lazy_constraint.assert_called_once_with(models[0], "b")
# Should ask internal solver to add generated constraint
solver.internal_solver.add_constraint.assert_called_once_with("c1")
def test_lazy_evaluate():
instances, models = get_test_pyomo_instances()
component = DynamicLazyConstraintsComponent()
component.classifiers = {
"a": Mock(spec=Classifier),
"b": Mock(spec=Classifier),
"c": Mock(spec=Classifier),
}
component.classifiers["a"].predict_proba = Mock(return_value=[[1.0, 0.0]])
component.classifiers["b"].predict_proba = Mock(return_value=[[0.0, 1.0]])
component.classifiers["c"].predict_proba = Mock(return_value=[[0.0, 1.0]])
instances[0].found_violated_lazy_constraints = ["a", "b", "c"]
instances[1].found_violated_lazy_constraints = ["b", "d"]
assert component.evaluate(instances) == {
0: {
"Accuracy": 0.75,
"F1 score": 0.8,
"Precision": 1.0,
"Recall": 2 / 3.0,
"Predicted positive": 2,
"Predicted negative": 2,
"Condition positive": 3,
"Condition negative": 1,
"False negative": 1,
"False positive": 0,
"True negative": 1,
"True positive": 2,
"Predicted positive (%)": 50.0,
"Predicted negative (%)": 50.0,
"Condition positive (%)": 75.0,
"Condition negative (%)": 25.0,
"False negative (%)": 25.0,
"False positive (%)": 0,
"True negative (%)": 25.0,
"True positive (%)": 50.0,
},
1: {
"Accuracy": 0.5,
"F1 score": 0.5,
"Precision": 0.5,
"Recall": 0.5,
"Predicted positive": 2,
"Predicted negative": 2,
"Condition positive": 2,
"Condition negative": 2,
"False negative": 1,
"False positive": 1,
"True negative": 1,
"True positive": 1,
"Predicted positive (%)": 50.0,
"Predicted negative (%)": 50.0,
"Condition positive (%)": 50.0,
"Condition negative (%)": 50.0,
"False negative (%)": 25.0,
"False positive (%)": 25.0,
"True negative (%)": 25.0,
"True positive (%)": 25.0,
},
}
@pytest.fixture
def training_instances() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
@@ -235,11 +76,11 @@ def training_instances() -> List[Instance]:
return instances
def test_fit_new(training_instances: List[Instance]) -> None:
def test_fit(training_instances: List[Instance]) -> None:
clf = Mock(spec=Classifier)
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
comp = DynamicLazyConstraintsComponent(classifier=clf)
comp.fit_new(training_instances)
comp.fit(training_instances)
assert clf.clone.call_count == 2
assert "type-a" in comp.classifiers
@@ -299,3 +140,32 @@ def test_fit_new(training_instances: List[Instance]) -> None:
]
),
)
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids = ["c1", "c2", "c3", "c4"]
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
)
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances[0],
training_instances[0].training_data[0],
)
assert pred == ["c1", "c4"]
ev = comp.sample_evaluate(
training_instances[0],
training_instances[0].training_data[0],
)
print(ev)
assert ev == {
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
}

View File

@@ -66,7 +66,7 @@ def test_subtour():
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver.solve(instance)
assert hasattr(instance, "found_violated_lazy_constraints")
assert len(instance.training_data[0].lazy_enforced) > 0
assert hasattr(instance, "found_violated_user_cuts")
x = instance.training_data[0].solution["x"]
assert x[0, 1] == 1.0