Finish DynamicLazyConstraintsComponent rewrite

master
Alinson S. Xavier 5 years ago
parent c6aee4f90d
commit 54c20382c9
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -106,8 +106,8 @@ class Component:
"""
return
@staticmethod
def sample_xy(
self,
instance: Instance,
sample: TrainingSample,
) -> Tuple[Dict, Dict]:

@ -3,17 +3,16 @@
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import sys
from typing import Any, Dict, List, TYPE_CHECKING, Hashable
from typing import Dict, List, TYPE_CHECKING, Hashable, Tuple
import numpy as np
from tqdm.auto import tqdm
from miplearn.classifiers import Classifier
from miplearn.classifiers.counting import CountingClassifier
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.extractors import InstanceFeaturesExtractor
from miplearn.features import TrainingSample
logger = logging.getLogger(__name__)
@ -29,14 +28,21 @@ class DynamicLazyConstraintsComponent(Component):
def __init__(
self,
classifier: Classifier = CountingClassifier(),
threshold: float = 0.05,
threshold: Threshold = MinProbabilityThreshold([0, 0.05]),
):
assert isinstance(classifier, Classifier)
self.threshold: float = threshold
self.threshold_prototype: Threshold = threshold
self.classifier_prototype: Classifier = classifier
self.classifiers: Dict[Any, Classifier] = {}
self.classifiers: Dict[Hashable, Classifier] = {}
self.thresholds: Dict[Hashable, Threshold] = {}
self.known_cids: List[str] = []
@staticmethod
def enforce(cids, instance, model, solver):
for cid in cids:
cobj = instance.build_lazy_constraint(model, cid)
solver.internal_solver.add_constraint(cobj)
def before_solve_mip(
self,
solver,
@ -46,101 +52,36 @@ class DynamicLazyConstraintsComponent(Component):
features,
training_data,
):
instance.found_violated_lazy_constraints = []
training_data.lazy_enforced = set()
logger.info("Predicting violated lazy constraints...")
violations = self.predict(instance)
logger.info("Enforcing %d lazy constraints..." % len(violations))
for v in violations:
cut = instance.build_lazy_constraint(model, v)
solver.internal_solver.add_constraint(cut)
cids = self.sample_predict(instance, training_data)
logger.info("Enforcing %d lazy constraints..." % len(cids))
self.enforce(cids, instance, model, solver)
def iteration_cb(self, solver, instance, model):
logger.debug("Finding violated (dynamic) lazy constraints...")
violations = instance.find_violated_lazy_constraints(model)
if len(violations) == 0:
logger.debug("Finding violated lazy constraints...")
cids = instance.find_violated_lazy_constraints(model)
if len(cids) == 0:
logger.debug("No violations found")
return False
instance.found_violated_lazy_constraints += violations
logger.debug(" %d violations found" % len(violations))
for v in violations:
cut = instance.build_lazy_constraint(model, v)
solver.internal_solver.add_constraint(cut)
else:
instance.training_data[-1].lazy_enforced |= set(cids)
logger.debug(" %d violations found" % len(cids))
self.enforce(cids, instance, model, solver)
return True
def fit(self, training_instances):
logger.debug("Fitting...")
features = InstanceFeaturesExtractor().extract(training_instances)
self.classifiers = {}
violation_to_instance_idx = {}
for (idx, instance) in enumerate(training_instances):
for v in instance.found_violated_lazy_constraints:
if isinstance(v, list):
v = tuple(v)
if v not in self.classifiers:
self.classifiers[v] = self.classifier_prototype.clone()
violation_to_instance_idx[v] = []
violation_to_instance_idx[v] += [idx]
for (v, classifier) in tqdm(
self.classifiers.items(),
desc="Fit (lazy)",
disable=not sys.stdout.isatty(),
):
logger.debug("Training: %s" % (str(v)))
label = [[True, False] for i in training_instances]
for idx in violation_to_instance_idx[v]:
label[idx] = [False, True]
label = np.array(label, dtype=np.bool8)
classifier.fit(features, label)
def predict(self, instance):
violations = []
features = InstanceFeaturesExtractor().extract([instance])
for (v, classifier) in self.classifiers.items():
proba = classifier.predict_proba(features)
if proba[0][1] > self.threshold:
violations += [v]
return violations
def evaluate(self, instances):
results = {}
all_violations = set()
for instance in instances:
all_violations |= set(instance.found_violated_lazy_constraints)
for idx in tqdm(
range(len(instances)),
desc="Evaluate (lazy)",
disable=not sys.stdout.isatty(),
):
instance = instances[idx]
condition_positive = set(instance.found_violated_lazy_constraints)
condition_negative = all_violations - condition_positive
pred_positive = set(self.predict(instance)) & all_violations
pred_negative = all_violations - pred_positive
tp = len(pred_positive & condition_positive)
tn = len(pred_negative & condition_negative)
fp = len(pred_positive & condition_negative)
fn = len(pred_negative & condition_positive)
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
return results
def fit_new(self, training_instances: List["Instance"]) -> None:
# Update known_cids
self.known_cids.clear()
for instance in training_instances:
for sample in instance.training_data:
if sample.lazy_enforced is None:
continue
self.known_cids += list(sample.lazy_enforced)
self.known_cids = sorted(set(self.known_cids))
# Build x and y matrices
def sample_xy_with_cids(
self,
instance: "Instance",
sample: TrainingSample,
) -> Tuple[
Dict[Hashable, List[List[float]]],
Dict[Hashable, List[List[bool]]],
Dict[Hashable, List[str]],
]:
x: Dict[Hashable, List[List[float]]] = {}
y: Dict[Hashable, List[List[bool]]] = {}
for instance in training_instances:
for sample in instance.training_data:
if sample.lazy_enforced is None:
continue
cids: Dict[Hashable, List[str]] = {}
for cid in self.known_cids:
category = instance.get_constraint_category(cid)
if category is None:
@ -148,6 +89,7 @@ class DynamicLazyConstraintsComponent(Component):
if category not in x:
x[category] = []
y[category] = []
cids[category] = []
assert instance.features.instance is not None
assert instance.features.instance.user_features is not None
cfeatures = instance.get_constraint_features(cid)
@ -158,15 +100,101 @@ class DynamicLazyConstraintsComponent(Component):
f = list(instance.features.instance.user_features)
f += cfeatures
x[category] += [f]
cids[category] += [cid]
if sample.lazy_enforced is not None:
if cid in sample.lazy_enforced:
y[category] += [[False, True]]
else:
y[category] += [[True, False]]
return x, y, cids
def sample_xy(
self,
instance: "Instance",
sample: TrainingSample,
) -> Tuple[Dict, Dict]:
x, y, _ = self.sample_xy_with_cids(instance, sample)
return x, y
# Train classifiers
def sample_predict(
self,
instance: "Instance",
sample: TrainingSample,
) -> List[str]:
pred: List[str] = []
x, _, cids = self.sample_xy_with_cids(instance, sample)
for category in x.keys():
assert category in self.classifiers
assert category in self.thresholds
clf = self.classifiers[category]
thr = self.thresholds[category]
nx = np.array(x[category])
proba = clf.predict_proba(nx)
t = thr.predict(nx)
for i in range(proba.shape[0]):
if proba[i][1] > t[1]:
pred += [cids[category][i]]
return pred
def fit(self, training_instances: List["Instance"]) -> None:
self.known_cids.clear()
for instance in training_instances:
for sample in instance.training_data:
if sample.lazy_enforced is None:
continue
self.known_cids += list(sample.lazy_enforced)
self.known_cids = sorted(set(self.known_cids))
super().fit(training_instances)
def fit_xy(
self,
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
for category in x.keys():
self.classifiers[category] = self.classifier_prototype.clone()
self.classifiers[category].fit(
np.array(x[category]),
np.array(y[category]),
self.thresholds[category] = self.threshold_prototype.clone()
npx = np.array(x[category])
npy = np.array(y[category])
self.classifiers[category].fit(npx, npy)
self.thresholds[category].fit(self.classifiers[category], npx, npy)
def sample_evaluate(
self,
instance: "Instance",
sample: TrainingSample,
) -> Dict[Hashable, Dict[str, float]]:
assert sample.lazy_enforced is not None
pred = set(self.sample_predict(instance, sample))
tp: Dict[Hashable, int] = {}
tn: Dict[Hashable, int] = {}
fp: Dict[Hashable, int] = {}
fn: Dict[Hashable, int] = {}
for cid in self.known_cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in tp.keys():
tp[category] = 0
tn[category] = 0
fp[category] = 0
fn[category] = 0
if cid in pred:
if cid in sample.lazy_enforced:
tp[category] += 1
else:
fp[category] += 1
else:
if cid in sample.lazy_enforced:
fn[category] += 1
else:
tn[category] += 1
return {
category: classifier_evaluation_dict(
tp=tp[category],
tn=tn[category],
fp=fp[category],
fn=fn[category],
)
for category in tp.keys()
}

@ -6,181 +6,22 @@ from unittest.mock import Mock
import numpy as np
import pytest
from numpy.linalg import norm
from numpy.testing import assert_array_equal
from miplearn import Instance
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
from miplearn.features import (
TrainingSample,
Features,
ConstraintFeatures,
InstanceFeatures,
)
from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.learning import LearningSolver
from tests.fixtures.knapsack import get_test_pyomo_instances
E = 0.1
def test_lazy_fit():
instances, models = get_test_pyomo_instances()
instances[0].found_violated_lazy_constraints = ["a", "b"]
instances[1].found_violated_lazy_constraints = ["b", "c"]
classifier = Mock(spec=Classifier)
classifier.clone = lambda: Mock(spec=Classifier)
component = DynamicLazyConstraintsComponent(classifier=classifier)
component.fit(instances)
# Should create one classifier for each violation
assert "a" in component.classifiers
assert "b" in component.classifiers
assert "c" in component.classifiers
# Should provide correct x_train to each classifier
expected_x_train_a = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
expected_x_train_b = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
expected_x_train_c = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
actual_x_train_a = component.classifiers["a"].fit.call_args[0][0]
actual_x_train_b = component.classifiers["b"].fit.call_args[0][0]
actual_x_train_c = component.classifiers["c"].fit.call_args[0][0]
assert norm(expected_x_train_a - actual_x_train_a) < E
assert norm(expected_x_train_b - actual_x_train_b) < E
assert norm(expected_x_train_c - actual_x_train_c) < E
# Should provide correct y_train to each classifier
expected_y_train_a = np.array(
[
[False, True],
[True, False],
]
)
expected_y_train_b = np.array(
[
[False, True],
[False, True],
]
)
expected_y_train_c = np.array(
[
[True, False],
[False, True],
]
)
assert_array_equal(
component.classifiers["a"].fit.call_args[0][1],
expected_y_train_a,
)
assert_array_equal(
component.classifiers["b"].fit.call_args[0][1],
expected_y_train_b,
)
assert_array_equal(
component.classifiers["c"].fit.call_args[0][1],
expected_y_train_c,
)
def test_lazy_before():
instances, models = get_test_pyomo_instances()
instances[0].build_lazy_constraint = Mock(return_value="c1")
solver = LearningSolver()
solver.internal_solver = Mock(spec=InternalSolver)
component = DynamicLazyConstraintsComponent(threshold=0.10)
component.classifiers = {"a": Mock(spec=Classifier), "b": Mock(spec=Classifier)}
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
component.before_solve_mip(
solver=solver,
instance=instances[0],
model=models[0],
stats=None,
features=None,
training_data=None,
)
# Should ask classifier likelihood of each constraint being violated
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
expected_x_test_b = np.array([[67.0, 21.75, 1287.92]])
actual_x_test_a = component.classifiers["a"].predict_proba.call_args[0][0]
actual_x_test_b = component.classifiers["b"].predict_proba.call_args[0][0]
assert norm(expected_x_test_a - actual_x_test_a) < E
assert norm(expected_x_test_b - actual_x_test_b) < E
# Should ask instance to generate cut for constraints whose likelihood
# of being violated exceeds the threshold
instances[0].build_lazy_constraint.assert_called_once_with(models[0], "b")
# Should ask internal solver to add generated constraint
solver.internal_solver.add_constraint.assert_called_once_with("c1")
def test_lazy_evaluate():
instances, models = get_test_pyomo_instances()
component = DynamicLazyConstraintsComponent()
component.classifiers = {
"a": Mock(spec=Classifier),
"b": Mock(spec=Classifier),
"c": Mock(spec=Classifier),
}
component.classifiers["a"].predict_proba = Mock(return_value=[[1.0, 0.0]])
component.classifiers["b"].predict_proba = Mock(return_value=[[0.0, 1.0]])
component.classifiers["c"].predict_proba = Mock(return_value=[[0.0, 1.0]])
instances[0].found_violated_lazy_constraints = ["a", "b", "c"]
instances[1].found_violated_lazy_constraints = ["b", "d"]
assert component.evaluate(instances) == {
0: {
"Accuracy": 0.75,
"F1 score": 0.8,
"Precision": 1.0,
"Recall": 2 / 3.0,
"Predicted positive": 2,
"Predicted negative": 2,
"Condition positive": 3,
"Condition negative": 1,
"False negative": 1,
"False positive": 0,
"True negative": 1,
"True positive": 2,
"Predicted positive (%)": 50.0,
"Predicted negative (%)": 50.0,
"Condition positive (%)": 75.0,
"Condition negative (%)": 25.0,
"False negative (%)": 25.0,
"False positive (%)": 0,
"True negative (%)": 25.0,
"True positive (%)": 50.0,
},
1: {
"Accuracy": 0.5,
"F1 score": 0.5,
"Precision": 0.5,
"Recall": 0.5,
"Predicted positive": 2,
"Predicted negative": 2,
"Condition positive": 2,
"Condition negative": 2,
"False negative": 1,
"False positive": 1,
"True negative": 1,
"True positive": 1,
"Predicted positive (%)": 50.0,
"Predicted negative (%)": 50.0,
"Condition positive (%)": 50.0,
"Condition negative (%)": 50.0,
"False negative (%)": 25.0,
"False positive (%)": 25.0,
"True negative (%)": 25.0,
"True positive (%)": 25.0,
},
}
@pytest.fixture
def training_instances() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
@ -235,11 +76,11 @@ def training_instances() -> List[Instance]:
return instances
def test_fit_new(training_instances: List[Instance]) -> None:
def test_fit(training_instances: List[Instance]) -> None:
clf = Mock(spec=Classifier)
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
comp = DynamicLazyConstraintsComponent(classifier=clf)
comp.fit_new(training_instances)
comp.fit(training_instances)
assert clf.clone.call_count == 2
assert "type-a" in comp.classifiers
@ -299,3 +140,32 @@ def test_fit_new(training_instances: List[Instance]) -> None:
]
),
)
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids = ["c1", "c2", "c3", "c4"]
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
)
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances[0],
training_instances[0].training_data[0],
)
assert pred == ["c1", "c4"]
ev = comp.sample_evaluate(
training_instances[0],
training_instances[0].training_data[0],
)
print(ev)
assert ev == {
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
}

@ -66,7 +66,7 @@ def test_subtour():
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver.solve(instance)
assert hasattr(instance, "found_violated_lazy_constraints")
assert len(instance.training_data[0].lazy_enforced) > 0
assert hasattr(instance, "found_violated_user_cuts")
x = instance.training_data[0].solution["x"]
assert x[0, 1] == 1.0

Loading…
Cancel
Save