mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
RelaxationComponent: Implement check_dropped
This commit is contained in:
@@ -6,36 +6,59 @@ import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from tqdm import tqdm
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.lazy_static import LazyConstraint
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RelaxationComponent(Component):
|
||||
"""
|
||||
A Component which builds a relaxation of the problem by dropping constraints.
|
||||
A Component that tries to build a relaxation that is simultaneously strong and easy to solve.
|
||||
|
||||
Currently, this component drops all integrality constraints, as well as
|
||||
all inequality constraints which are not likely binding in the LP relaxation.
|
||||
In a future version of MIPLearn, this component may decide to keep some
|
||||
integrality constraints it it determines that they have small impact on
|
||||
running time, but large impact on dual bound.
|
||||
Currently, this component performs the following operations:
|
||||
- Drops all integrality constraints
|
||||
- Drops all inequality constraints that are not likely to be binding.
|
||||
|
||||
In future versions of MIPLearn, this component may keep some integrality constraints and perform other operations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
classifier : Classifier, optional
|
||||
Classifier used to predict whether each constraint is binding or not. One deep copy of this classifier
|
||||
is made for each constraint category.
|
||||
threshold : float, optional
|
||||
If the probability that a constraint is binding exceeds this threshold, the constraint is dropped from the
|
||||
linear relaxation.
|
||||
slack_tolerance : float, optional
|
||||
If a constraint has slack greater than this threshold, then the constraint is considered loose. By default,
|
||||
this threshold equals a small positive number to compensate for numerical issues.
|
||||
check_dropped : bool, optional
|
||||
If `check_dropped` is true, then, after the problem is solved, the component verifies that all dropped
|
||||
constraints are still satisfied and re-adds the ones that are not.
|
||||
violation_tolerance : float, optional
|
||||
If `check_dropped` is true, a constraint is considered satisfied during the check if its violation is smaller
|
||||
than this tolerance.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.95,
|
||||
slack_tolerance=1e-5,
|
||||
check_dropped=False,
|
||||
violation_tolerance=1e-5,
|
||||
):
|
||||
self.classifiers = {}
|
||||
self.classifier_prototype = classifier
|
||||
self.threshold = threshold
|
||||
self.slack_tolerance = slack_tolerance
|
||||
self.pool = []
|
||||
self.check_dropped = check_dropped
|
||||
self.violation_tolerance = violation_tolerance
|
||||
|
||||
def before_solve(self, solver, instance, _):
|
||||
logger.info("Relaxing integrality...")
|
||||
@@ -47,14 +70,14 @@ class RelaxationComponent(Component):
|
||||
constraint_ids=cids,
|
||||
return_constraints=True)
|
||||
y = self.predict(x)
|
||||
n_removed = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
cid = constraints[category][i]
|
||||
solver.internal_solver.extract_constraint(cid)
|
||||
n_removed += 1
|
||||
logger.info("Removed %d predicted redundant LP constraints" % n_removed)
|
||||
c = LazyConstraint(cid=cid,
|
||||
obj=solver.internal_solver.extract_constraint(cid))
|
||||
self.pool += [c]
|
||||
logger.info("Extracted %d predicted constraints" % len(self.pool))
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||
@@ -120,7 +143,7 @@ class RelaxationComponent(Component):
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
y[category] = []
|
||||
#x_cat = np.array(x_cat)
|
||||
# x_cat = np.array(x_cat)
|
||||
proba = self.classifiers[category].predict_proba(x_cat)
|
||||
for i in range(len(proba)):
|
||||
if proba[i][1] >= self.threshold:
|
||||
@@ -148,4 +171,19 @@ class RelaxationComponent(Component):
|
||||
tn += 1
|
||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
|
||||
|
||||
def iteration_cb(self, solver, instance, model):
|
||||
if not self.check_dropped:
|
||||
return False
|
||||
logger.debug("Checking that dropped constraints are satisfied...")
|
||||
constraints_to_add = []
|
||||
for c in self.pool:
|
||||
if not solver.internal_solver.is_constraint_satisfied(c.obj, self.violation_tolerance):
|
||||
constraints_to_add.append(c)
|
||||
for c in constraints_to_add:
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
if len(constraints_to_add) > 0:
|
||||
logger.info("%8d constraints %8d in the pool" % (len(constraints_to_add), len(self.pool)))
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@@ -11,7 +11,7 @@ from miplearn import (RelaxationComponent,
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
|
||||
def test_usage_with_solver():
|
||||
def _setup():
|
||||
solver = Mock(spec=LearningSolver)
|
||||
|
||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||
@@ -22,6 +22,8 @@ def test_usage_with_solver():
|
||||
"c3": 0.0,
|
||||
"c4": 1.4,
|
||||
})
|
||||
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
|
||||
internal.is_constraint_satisfied = Mock(return_value=False)
|
||||
|
||||
instance = Mock(spec=Instance)
|
||||
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
@@ -36,21 +38,29 @@ def test_usage_with_solver():
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
|
||||
component = RelaxationComponent()
|
||||
component.classifiers = {
|
||||
classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.02, 0.98],
|
||||
])
|
||||
|
||||
return solver, internal, instance, classifiers
|
||||
|
||||
|
||||
def test_usage():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = RelaxationComponent()
|
||||
component.classifiers = classifiers
|
||||
|
||||
# LearningSolver calls before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
@@ -98,6 +108,44 @@ def test_usage_with_solver():
|
||||
}
|
||||
|
||||
|
||||
def test_usage_with_check_dropped():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = RelaxationComponent(check_dropped=True,
|
||||
violation_tolerance=1e-3)
|
||||
component.classifiers = classifiers
|
||||
|
||||
# LearningSolver call before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
# Assert constraints are extracted
|
||||
assert internal.extract_constraint.call_count == 2
|
||||
internal.extract_constraint.assert_has_calls([
|
||||
call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# LearningSolver calls iteration_cb (first time)
|
||||
should_repeat = component.iteration_cb(solver, instance, None)
|
||||
|
||||
# Should ask LearningSolver to repeat
|
||||
assert should_repeat
|
||||
|
||||
# Should ask solver if removed constraints are satisfied (mock always returns false)
|
||||
internal.is_constraint_satisfied.assert_has_calls([
|
||||
call("<c3>", 1e-3),
|
||||
call("<c4>", 1e-3),
|
||||
])
|
||||
|
||||
# Should add constraints back to LP relaxation
|
||||
internal.add_constraint.assert_has_calls([
|
||||
call("<c3>"), call("<c4>")
|
||||
])
|
||||
|
||||
# LearningSolver calls iteration_cb (second time)
|
||||
should_repeat = component.iteration_cb(solver, instance, None)
|
||||
assert not should_repeat
|
||||
|
||||
|
||||
def test_x_y_fit_predict_evaluate():
|
||||
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
||||
component = RelaxationComponent(slack_tolerance=0.05,
|
||||
@@ -182,7 +230,3 @@ def test_x_y_fit_predict_evaluate():
|
||||
assert ev["True negative"] == 1
|
||||
assert ev["False positive"] == 1
|
||||
assert ev["False negative"] == 0
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user