mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-12 12:28:52 -06:00
RelaxationComponent: Implement check_dropped
This commit is contained in:
@@ -11,7 +11,7 @@ from miplearn import (RelaxationComponent,
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
|
||||
def test_usage_with_solver():
|
||||
def _setup():
|
||||
solver = Mock(spec=LearningSolver)
|
||||
|
||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||
@@ -22,6 +22,8 @@ def test_usage_with_solver():
|
||||
"c3": 0.0,
|
||||
"c4": 1.4,
|
||||
})
|
||||
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
|
||||
internal.is_constraint_satisfied = Mock(return_value=False)
|
||||
|
||||
instance = Mock(spec=Instance)
|
||||
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||
@@ -36,21 +38,29 @@ def test_usage_with_solver():
|
||||
"c4": "type-b",
|
||||
}[cid])
|
||||
|
||||
component = RelaxationComponent()
|
||||
component.classifiers = {
|
||||
classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
}
|
||||
component.classifiers["type-a"].predict_proba = \
|
||||
classifiers["type-a"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.20, 0.80],
|
||||
[0.05, 0.95],
|
||||
])
|
||||
component.classifiers["type-b"].predict_proba = \
|
||||
classifiers["type-b"].predict_proba = \
|
||||
Mock(return_value=[
|
||||
[0.02, 0.98],
|
||||
])
|
||||
|
||||
return solver, internal, instance, classifiers
|
||||
|
||||
|
||||
def test_usage():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = RelaxationComponent()
|
||||
component.classifiers = classifiers
|
||||
|
||||
# LearningSolver calls before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
@@ -98,6 +108,44 @@ def test_usage_with_solver():
|
||||
}
|
||||
|
||||
|
||||
def test_usage_with_check_dropped():
|
||||
solver, internal, instance, classifiers = _setup()
|
||||
|
||||
component = RelaxationComponent(check_dropped=True,
|
||||
violation_tolerance=1e-3)
|
||||
component.classifiers = classifiers
|
||||
|
||||
# LearningSolver call before_solve
|
||||
component.before_solve(solver, instance, None)
|
||||
|
||||
# Assert constraints are extracted
|
||||
assert internal.extract_constraint.call_count == 2
|
||||
internal.extract_constraint.assert_has_calls([
|
||||
call("c3"), call("c4"),
|
||||
])
|
||||
|
||||
# LearningSolver calls iteration_cb (first time)
|
||||
should_repeat = component.iteration_cb(solver, instance, None)
|
||||
|
||||
# Should ask LearningSolver to repeat
|
||||
assert should_repeat
|
||||
|
||||
# Should ask solver if removed constraints are satisfied (mock always returns false)
|
||||
internal.is_constraint_satisfied.assert_has_calls([
|
||||
call("<c3>", 1e-3),
|
||||
call("<c4>", 1e-3),
|
||||
])
|
||||
|
||||
# Should add constraints back to LP relaxation
|
||||
internal.add_constraint.assert_has_calls([
|
||||
call("<c3>"), call("<c4>")
|
||||
])
|
||||
|
||||
# LearningSolver calls iteration_cb (second time)
|
||||
should_repeat = component.iteration_cb(solver, instance, None)
|
||||
assert not should_repeat
|
||||
|
||||
|
||||
def test_x_y_fit_predict_evaluate():
|
||||
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
||||
component = RelaxationComponent(slack_tolerance=0.05,
|
||||
@@ -182,7 +230,3 @@ def test_x_y_fit_predict_evaluate():
|
||||
assert ev["True negative"] == 1
|
||||
assert ev["False positive"] == 1
|
||||
assert ev["False negative"] == 0
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user