mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
RelaxationComponent: Implement check_dropped
This commit is contained in:
@@ -6,36 +6,59 @@ import logging
|
|||||||
import sys
|
import sys
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from miplearn.components import classifier_evaluation_dict
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from miplearn import Component
|
from miplearn import Component
|
||||||
from miplearn.classifiers.counting import CountingClassifier
|
from miplearn.classifiers.counting import CountingClassifier
|
||||||
|
from miplearn.components import classifier_evaluation_dict
|
||||||
|
from miplearn.components.lazy_static import LazyConstraint
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class RelaxationComponent(Component):
|
class RelaxationComponent(Component):
|
||||||
"""
|
"""
|
||||||
A Component which builds a relaxation of the problem by dropping constraints.
|
A Component that tries to build a relaxation that is simultaneously strong and easy to solve.
|
||||||
|
|
||||||
Currently, this component drops all integrality constraints, as well as
|
Currently, this component performs the following operations:
|
||||||
all inequality constraints which are not likely binding in the LP relaxation.
|
- Drops all integrality constraints
|
||||||
In a future version of MIPLearn, this component may decide to keep some
|
- Drops all inequality constraints that are not likely to be binding.
|
||||||
integrality constraints it it determines that they have small impact on
|
|
||||||
running time, but large impact on dual bound.
|
In future versions of MIPLearn, this component may keep some integrality constraints and perform other operations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
classifier : Classifier, optional
|
||||||
|
Classifier used to predict whether each constraint is binding or not. One deep copy of this classifier
|
||||||
|
is made for each constraint category.
|
||||||
|
threshold : float, optional
|
||||||
|
If the probability that a constraint is binding exceeds this threshold, the constraint is dropped from the
|
||||||
|
linear relaxation.
|
||||||
|
slack_tolerance : float, optional
|
||||||
|
If a constraint has slack greater than this threshold, then the constraint is considered loose. By default,
|
||||||
|
this threshold equals a small positive number to compensate for numerical issues.
|
||||||
|
check_dropped : bool, optional
|
||||||
|
If `check_dropped` is true, then, after the problem is solved, the component verifies that all dropped
|
||||||
|
constraints are still satisfied and re-adds the ones that are not.
|
||||||
|
violation_tolerance : float, optional
|
||||||
|
If `check_dropped` is true, a constraint is considered satisfied during the check if its violation is smaller
|
||||||
|
than this tolerance.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
classifier=CountingClassifier(),
|
classifier=CountingClassifier(),
|
||||||
threshold=0.95,
|
threshold=0.95,
|
||||||
slack_tolerance=1e-5,
|
slack_tolerance=1e-5,
|
||||||
|
check_dropped=False,
|
||||||
|
violation_tolerance=1e-5,
|
||||||
):
|
):
|
||||||
self.classifiers = {}
|
self.classifiers = {}
|
||||||
self.classifier_prototype = classifier
|
self.classifier_prototype = classifier
|
||||||
self.threshold = threshold
|
self.threshold = threshold
|
||||||
self.slack_tolerance = slack_tolerance
|
self.slack_tolerance = slack_tolerance
|
||||||
|
self.pool = []
|
||||||
|
self.check_dropped = check_dropped
|
||||||
|
self.violation_tolerance = violation_tolerance
|
||||||
|
|
||||||
def before_solve(self, solver, instance, _):
|
def before_solve(self, solver, instance, _):
|
||||||
logger.info("Relaxing integrality...")
|
logger.info("Relaxing integrality...")
|
||||||
@@ -47,14 +70,14 @@ class RelaxationComponent(Component):
|
|||||||
constraint_ids=cids,
|
constraint_ids=cids,
|
||||||
return_constraints=True)
|
return_constraints=True)
|
||||||
y = self.predict(x)
|
y = self.predict(x)
|
||||||
n_removed = 0
|
|
||||||
for category in y.keys():
|
for category in y.keys():
|
||||||
for i in range(len(y[category])):
|
for i in range(len(y[category])):
|
||||||
if y[category][i][0] == 1:
|
if y[category][i][0] == 1:
|
||||||
cid = constraints[category][i]
|
cid = constraints[category][i]
|
||||||
solver.internal_solver.extract_constraint(cid)
|
c = LazyConstraint(cid=cid,
|
||||||
n_removed += 1
|
obj=solver.internal_solver.extract_constraint(cid))
|
||||||
logger.info("Removed %d predicted redundant LP constraints" % n_removed)
|
self.pool += [c]
|
||||||
|
logger.info("Extracted %d predicted constraints" % len(self.pool))
|
||||||
|
|
||||||
def after_solve(self, solver, instance, model, results):
|
def after_solve(self, solver, instance, model, results):
|
||||||
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
||||||
@@ -120,7 +143,7 @@ class RelaxationComponent(Component):
|
|||||||
if category not in self.classifiers:
|
if category not in self.classifiers:
|
||||||
continue
|
continue
|
||||||
y[category] = []
|
y[category] = []
|
||||||
#x_cat = np.array(x_cat)
|
# x_cat = np.array(x_cat)
|
||||||
proba = self.classifiers[category].predict_proba(x_cat)
|
proba = self.classifiers[category].predict_proba(x_cat)
|
||||||
for i in range(len(proba)):
|
for i in range(len(proba)):
|
||||||
if proba[i][1] >= self.threshold:
|
if proba[i][1] >= self.threshold:
|
||||||
@@ -148,4 +171,19 @@ class RelaxationComponent(Component):
|
|||||||
tn += 1
|
tn += 1
|
||||||
return classifier_evaluation_dict(tp, tn, fp, fn)
|
return classifier_evaluation_dict(tp, tn, fp, fn)
|
||||||
|
|
||||||
|
def iteration_cb(self, solver, instance, model):
|
||||||
|
if not self.check_dropped:
|
||||||
|
return False
|
||||||
|
logger.debug("Checking that dropped constraints are satisfied...")
|
||||||
|
constraints_to_add = []
|
||||||
|
for c in self.pool:
|
||||||
|
if not solver.internal_solver.is_constraint_satisfied(c.obj, self.violation_tolerance):
|
||||||
|
constraints_to_add.append(c)
|
||||||
|
for c in constraints_to_add:
|
||||||
|
self.pool.remove(c)
|
||||||
|
solver.internal_solver.add_constraint(c.obj)
|
||||||
|
if len(constraints_to_add) > 0:
|
||||||
|
logger.info("%8d constraints %8d in the pool" % (len(constraints_to_add), len(self.pool)))
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|||||||
@@ -11,7 +11,7 @@ from miplearn import (RelaxationComponent,
|
|||||||
from miplearn.classifiers import Classifier
|
from miplearn.classifiers import Classifier
|
||||||
|
|
||||||
|
|
||||||
def test_usage_with_solver():
|
def _setup():
|
||||||
solver = Mock(spec=LearningSolver)
|
solver = Mock(spec=LearningSolver)
|
||||||
|
|
||||||
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
||||||
@@ -22,6 +22,8 @@ def test_usage_with_solver():
|
|||||||
"c3": 0.0,
|
"c3": 0.0,
|
||||||
"c4": 1.4,
|
"c4": 1.4,
|
||||||
})
|
})
|
||||||
|
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
|
||||||
|
internal.is_constraint_satisfied = Mock(return_value=False)
|
||||||
|
|
||||||
instance = Mock(spec=Instance)
|
instance = Mock(spec=Instance)
|
||||||
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
||||||
@@ -36,21 +38,29 @@ def test_usage_with_solver():
|
|||||||
"c4": "type-b",
|
"c4": "type-b",
|
||||||
}[cid])
|
}[cid])
|
||||||
|
|
||||||
component = RelaxationComponent()
|
classifiers = {
|
||||||
component.classifiers = {
|
|
||||||
"type-a": Mock(spec=Classifier),
|
"type-a": Mock(spec=Classifier),
|
||||||
"type-b": Mock(spec=Classifier),
|
"type-b": Mock(spec=Classifier),
|
||||||
}
|
}
|
||||||
component.classifiers["type-a"].predict_proba = \
|
classifiers["type-a"].predict_proba = \
|
||||||
Mock(return_value=[
|
Mock(return_value=[
|
||||||
[0.20, 0.80],
|
[0.20, 0.80],
|
||||||
[0.05, 0.95],
|
[0.05, 0.95],
|
||||||
])
|
])
|
||||||
component.classifiers["type-b"].predict_proba = \
|
classifiers["type-b"].predict_proba = \
|
||||||
Mock(return_value=[
|
Mock(return_value=[
|
||||||
[0.02, 0.98],
|
[0.02, 0.98],
|
||||||
])
|
])
|
||||||
|
|
||||||
|
return solver, internal, instance, classifiers
|
||||||
|
|
||||||
|
|
||||||
|
def test_usage():
|
||||||
|
solver, internal, instance, classifiers = _setup()
|
||||||
|
|
||||||
|
component = RelaxationComponent()
|
||||||
|
component.classifiers = classifiers
|
||||||
|
|
||||||
# LearningSolver calls before_solve
|
# LearningSolver calls before_solve
|
||||||
component.before_solve(solver, instance, None)
|
component.before_solve(solver, instance, None)
|
||||||
|
|
||||||
@@ -98,6 +108,44 @@ def test_usage_with_solver():
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def test_usage_with_check_dropped():
|
||||||
|
solver, internal, instance, classifiers = _setup()
|
||||||
|
|
||||||
|
component = RelaxationComponent(check_dropped=True,
|
||||||
|
violation_tolerance=1e-3)
|
||||||
|
component.classifiers = classifiers
|
||||||
|
|
||||||
|
# LearningSolver call before_solve
|
||||||
|
component.before_solve(solver, instance, None)
|
||||||
|
|
||||||
|
# Assert constraints are extracted
|
||||||
|
assert internal.extract_constraint.call_count == 2
|
||||||
|
internal.extract_constraint.assert_has_calls([
|
||||||
|
call("c3"), call("c4"),
|
||||||
|
])
|
||||||
|
|
||||||
|
# LearningSolver calls iteration_cb (first time)
|
||||||
|
should_repeat = component.iteration_cb(solver, instance, None)
|
||||||
|
|
||||||
|
# Should ask LearningSolver to repeat
|
||||||
|
assert should_repeat
|
||||||
|
|
||||||
|
# Should ask solver if removed constraints are satisfied (mock always returns false)
|
||||||
|
internal.is_constraint_satisfied.assert_has_calls([
|
||||||
|
call("<c3>", 1e-3),
|
||||||
|
call("<c4>", 1e-3),
|
||||||
|
])
|
||||||
|
|
||||||
|
# Should add constraints back to LP relaxation
|
||||||
|
internal.add_constraint.assert_has_calls([
|
||||||
|
call("<c3>"), call("<c4>")
|
||||||
|
])
|
||||||
|
|
||||||
|
# LearningSolver calls iteration_cb (second time)
|
||||||
|
should_repeat = component.iteration_cb(solver, instance, None)
|
||||||
|
assert not should_repeat
|
||||||
|
|
||||||
|
|
||||||
def test_x_y_fit_predict_evaluate():
|
def test_x_y_fit_predict_evaluate():
|
||||||
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
||||||
component = RelaxationComponent(slack_tolerance=0.05,
|
component = RelaxationComponent(slack_tolerance=0.05,
|
||||||
@@ -182,7 +230,3 @@ def test_x_y_fit_predict_evaluate():
|
|||||||
assert ev["True negative"] == 1
|
assert ev["True negative"] == 1
|
||||||
assert ev["False positive"] == 1
|
assert ev["False positive"] == 1
|
||||||
assert ev["False negative"] == 0
|
assert ev["False negative"] == 0
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user