RelaxationComponent: Implement check_dropped

pull/3/head
Alinson S. Xavier 5 years ago
parent 51b5d8e549
commit 54d80bfa85

@ -6,36 +6,59 @@ import logging
import sys
from copy import deepcopy
import numpy as np
from miplearn.components import classifier_evaluation_dict
from tqdm import tqdm
from miplearn import Component
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict
from miplearn.components.lazy_static import LazyConstraint
logger = logging.getLogger(__name__)
class RelaxationComponent(Component):
"""
A Component which builds a relaxation of the problem by dropping constraints.
Currently, this component drops all integrality constraints, as well as
all inequality constraints which are not likely binding in the LP relaxation.
In a future version of MIPLearn, this component may decide to keep some
integrality constraints it it determines that they have small impact on
running time, but large impact on dual bound.
A Component that tries to build a relaxation that is simultaneously strong and easy to solve.
Currently, this component performs the following operations:
- Drops all integrality constraints
- Drops all inequality constraints that are not likely to be binding.
In future versions of MIPLearn, this component may keep some integrality constraints and perform other operations.
Parameters
----------
classifier : Classifier, optional
Classifier used to predict whether each constraint is binding or not. One deep copy of this classifier
is made for each constraint category.
threshold : float, optional
If the probability that a constraint is binding exceeds this threshold, the constraint is dropped from the
linear relaxation.
slack_tolerance : float, optional
If a constraint has slack greater than this threshold, then the constraint is considered loose. By default,
this threshold equals a small positive number to compensate for numerical issues.
check_dropped : bool, optional
If `check_dropped` is true, then, after the problem is solved, the component verifies that all dropped
constraints are still satisfied and re-adds the ones that are not.
violation_tolerance : float, optional
If `check_dropped` is true, a constraint is considered satisfied during the check if its violation is smaller
than this tolerance.
"""
def __init__(self,
classifier=CountingClassifier(),
threshold=0.95,
slack_tolerance=1e-5,
check_dropped=False,
violation_tolerance=1e-5,
):
self.classifiers = {}
self.classifier_prototype = classifier
self.threshold = threshold
self.slack_tolerance = slack_tolerance
self.pool = []
self.check_dropped = check_dropped
self.violation_tolerance = violation_tolerance
def before_solve(self, solver, instance, _):
logger.info("Relaxing integrality...")
@ -47,14 +70,14 @@ class RelaxationComponent(Component):
constraint_ids=cids,
return_constraints=True)
y = self.predict(x)
n_removed = 0
for category in y.keys():
for i in range(len(y[category])):
if y[category][i][0] == 1:
cid = constraints[category][i]
solver.internal_solver.extract_constraint(cid)
n_removed += 1
logger.info("Removed %d predicted redundant LP constraints" % n_removed)
c = LazyConstraint(cid=cid,
obj=solver.internal_solver.extract_constraint(cid))
self.pool += [c]
logger.info("Extracted %d predicted constraints" % len(self.pool))
def after_solve(self, solver, instance, model, results):
instance.slacks = solver.internal_solver.get_constraint_slacks()
@ -120,7 +143,7 @@ class RelaxationComponent(Component):
if category not in self.classifiers:
continue
y[category] = []
#x_cat = np.array(x_cat)
# x_cat = np.array(x_cat)
proba = self.classifiers[category].predict_proba(x_cat)
for i in range(len(proba)):
if proba[i][1] >= self.threshold:
@ -148,4 +171,19 @@ class RelaxationComponent(Component):
tn += 1
return classifier_evaluation_dict(tp, tn, fp, fn)
def iteration_cb(self, solver, instance, model):
if not self.check_dropped:
return False
logger.debug("Checking that dropped constraints are satisfied...")
constraints_to_add = []
for c in self.pool:
if not solver.internal_solver.is_constraint_satisfied(c.obj, self.violation_tolerance):
constraints_to_add.append(c)
for c in constraints_to_add:
self.pool.remove(c)
solver.internal_solver.add_constraint(c.obj)
if len(constraints_to_add) > 0:
logger.info("%8d constraints %8d in the pool" % (len(constraints_to_add), len(self.pool)))
return True
else:
return False

@ -11,7 +11,7 @@ from miplearn import (RelaxationComponent,
from miplearn.classifiers import Classifier
def test_usage_with_solver():
def _setup():
solver = Mock(spec=LearningSolver)
internal = solver.internal_solver = Mock(spec=InternalSolver)
@ -22,6 +22,8 @@ def test_usage_with_solver():
"c3": 0.0,
"c4": 1.4,
})
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
internal.is_constraint_satisfied = Mock(return_value=False)
instance = Mock(spec=Instance)
instance.get_constraint_features = Mock(side_effect=lambda cid: {
@ -36,21 +38,29 @@ def test_usage_with_solver():
"c4": "type-b",
}[cid])
component = RelaxationComponent()
component.classifiers = {
classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
component.classifiers["type-a"].predict_proba = \
classifiers["type-a"].predict_proba = \
Mock(return_value=[
[0.20, 0.80],
[0.05, 0.95],
])
component.classifiers["type-b"].predict_proba = \
classifiers["type-b"].predict_proba = \
Mock(return_value=[
[0.02, 0.98],
])
return solver, internal, instance, classifiers
def test_usage():
solver, internal, instance, classifiers = _setup()
component = RelaxationComponent()
component.classifiers = classifiers
# LearningSolver calls before_solve
component.before_solve(solver, instance, None)
@ -98,6 +108,44 @@ def test_usage_with_solver():
}
def test_usage_with_check_dropped():
solver, internal, instance, classifiers = _setup()
component = RelaxationComponent(check_dropped=True,
violation_tolerance=1e-3)
component.classifiers = classifiers
# LearningSolver call before_solve
component.before_solve(solver, instance, None)
# Assert constraints are extracted
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls([
call("c3"), call("c4"),
])
# LearningSolver calls iteration_cb (first time)
should_repeat = component.iteration_cb(solver, instance, None)
# Should ask LearningSolver to repeat
assert should_repeat
# Should ask solver if removed constraints are satisfied (mock always returns false)
internal.is_constraint_satisfied.assert_has_calls([
call("<c3>", 1e-3),
call("<c4>", 1e-3),
])
# Should add constraints back to LP relaxation
internal.add_constraint.assert_has_calls([
call("<c3>"), call("<c4>")
])
# LearningSolver calls iteration_cb (second time)
should_repeat = component.iteration_cb(solver, instance, None)
assert not should_repeat
def test_x_y_fit_predict_evaluate():
instances = [Mock(spec=Instance), Mock(spec=Instance)]
component = RelaxationComponent(slack_tolerance=0.05,
@ -182,7 +230,3 @@ def test_x_y_fit_predict_evaluate():
assert ev["True negative"] == 1
assert ev["False positive"] == 1
assert ev["False negative"] == 0

Loading…
Cancel
Save