Convert Features into dataclass

master
Alinson S. Xavier 5 years ago
parent f2520f33fb
commit 59f4f75a53
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -61,13 +61,16 @@ class StaticLazyConstraintsComponent(Component):
training_data: TrainingSample,
) -> None:
assert solver.internal_solver is not None
if not features["Instance"]["Lazy constraint count"] == 0:
assert features.instance is not None
assert features.constraints is not None
if not features.instance["Lazy constraint count"] == 0:
logger.info("Instance does not have static lazy constraints. Skipping.")
logger.info("Predicting required lazy constraints...")
self.enforced_cids = set(self.sample_predict(features, training_data))
logger.info("Moving lazy constraints to the pool...")
self.pool = {}
for (cid, cdict) in features["Constraints"].items():
for (cid, cdict) in features.constraints.items():
if cdict["Lazy"] and cid not in self.enforced_cids:
self.pool[cid] = LazyConstraint(
cid=cid,
@ -145,9 +148,11 @@ class StaticLazyConstraintsComponent(Component):
features: Features,
sample: TrainingSample,
) -> List[str]:
assert features.constraints is not None
x, y = self.sample_xy(features, sample)
category_to_cids: Dict[Hashable, List[str]] = {}
for (cid, cdict) in features["Constraints"].items():
for (cid, cdict) in features.constraints.items():
if "Category" not in cdict or cdict["Category"] is None:
continue
category = cdict["Category"]
@ -172,9 +177,10 @@ class StaticLazyConstraintsComponent(Component):
features: Features,
sample: TrainingSample,
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
assert features.constraints is not None
x: Dict = {}
y: Dict = {}
for (cid, cfeatures) in features["Constraints"].items():
for (cid, cfeatures) in features.constraints.items():
if not cfeatures["Lazy"]:
continue
category = cfeatures["Category"]

@ -77,9 +77,10 @@ class ObjectiveValueComponent(Component):
features: Features,
sample: TrainingSample,
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
assert features.instance is not None
x: Dict[Hashable, List[List[float]]] = {}
y: Dict[Hashable, List[List[float]]] = {}
f = list(features["Instance"]["User features"])
f = list(features.instance["User features"])
if "LP value" in sample and sample["LP value"] is not None:
f += [sample["LP value"]]
for c in ["Upper bound", "Lower bound"]:

@ -105,9 +105,11 @@ class PrimalSolutionComponent(Component):
features: Features,
sample: TrainingSample,
) -> Solution:
assert features.variables is not None
# Initialize empty solution
solution: Solution = {}
for (var_name, var_dict) in features["Variables"].items():
for (var_name, var_dict) in features.variables.items():
solution[var_name] = {}
for idx in var_dict.keys():
solution[var_name][idx] = None
@ -132,7 +134,7 @@ class PrimalSolutionComponent(Component):
# Convert y_pred into solution
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
for (var_name, var_dict) in features["Variables"].items():
for (var_name, var_dict) in features.variables.items():
for (idx, var_features) in var_dict.items():
category = var_features["Category"]
offset = category_offset[category]
@ -149,12 +151,13 @@ class PrimalSolutionComponent(Component):
features: Features,
sample: TrainingSample,
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
assert features.variables is not None
x: Dict = {}
y: Dict = {}
solution: Optional[Solution] = None
if "Solution" in sample and sample["Solution"] is not None:
solution = sample["Solution"]
for (var_name, var_dict) in features["Variables"].items():
for (var_name, var_dict) in features.variables.items():
for (idx, var_features) in var_dict.items():
category = var_features["Category"]
if category is None:

@ -19,13 +19,10 @@ class FeaturesExtractor:
) -> None:
self.solver = internal_solver
def extract(self, instance: "Instance") -> Features:
features: Features = {
"Variables": self._extract_variables(instance),
"Constraints": self._extract_constraints(instance),
}
features["Instance"] = self._extract_instance(instance, features)
return features
def extract(self, instance: "Instance") -> None:
instance.features.variables = self._extract_variables(instance)
instance.features.constraints = self._extract_constraints(instance)
instance.features.instance = self._extract_instance(instance, instance.features)
def _extract_variables(self, instance: "Instance") -> Dict:
variables = self.solver.get_empty_solution()
@ -97,6 +94,7 @@ class FeaturesExtractor:
instance: "Instance",
features: Features,
) -> InstanceFeatures:
assert features.constraints is not None
user_features = instance.get_instance_features()
assert isinstance(user_features, list), (
f"Instance features must be a list. "
@ -108,7 +106,7 @@ class FeaturesExtractor:
f"Found {type(v).__name__} instead."
)
lazy_count = 0
for (cid, cdict) in features["Constraints"].items():
for (cid, cdict) in features.constraints.items():
if cdict["Lazy"]:
lazy_count += 1
return {

@ -47,7 +47,7 @@ class Instance(ABC):
def __init__(self) -> None:
self.training_data: List[TrainingSample] = []
self.features: Features = {}
self.features: Features = Features()
@abstractmethod
def to_model(self) -> Any:
@ -206,8 +206,8 @@ class PickleGzInstance(Instance):
Path of the gzipped pickle file that should be loaded.
"""
# noinspection PyMissingConstructor
def __init__(self, filename: str) -> None:
super().__init__()
assert os.path.exists(filename), f"File not found: {filename}"
self.instance: Optional[Instance] = None
self.filename: str = filename

@ -148,9 +148,7 @@ class LearningSolver:
self.internal_solver.set_instance(instance, model)
# Extract features
extractor = FeaturesExtractor(self.internal_solver)
instance.features.clear() # type: ignore
instance.features.update(extractor.extract(instance))
FeaturesExtractor(self.internal_solver).extract(instance)
callback_args = (
self,

@ -3,6 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Optional, Dict, Callable, Any, Union, Tuple, List, Set, Hashable
from dataclasses import dataclass
from mypy_extensions import TypedDict
@ -108,15 +109,13 @@ ConstraintFeatures = TypedDict(
total=False,
)
Features = TypedDict(
"Features",
{
"Instance": InstanceFeatures,
"Variables": Dict[str, Dict[VarIndex, VariableFeatures]],
"Constraints": Dict[str, ConstraintFeatures],
},
total=False,
)
@dataclass
class Features:
instance: Optional[InstanceFeatures] = None
variables: Optional[Dict[str, Dict[VarIndex, VariableFeatures]]] = None
constraints: Optional[Dict[str, ConstraintFeatures]] = None
IterationCallback = Callable[[], bool]

@ -24,11 +24,11 @@ def sample() -> TrainingSample:
@pytest.fixture
def features() -> Features:
return {
"Instance": {
return Features(
instance={
"Lazy constraint count": 4,
},
"Constraints": {
constraints={
"c1": {
"Category": "type-a",
"User features": [1.0, 1.0],
@ -55,7 +55,7 @@ def features() -> Features:
"Lazy": False,
},
},
}
)
def test_usage_with_solver(features: Features) -> None:

@ -17,11 +17,11 @@ import numpy as np
@pytest.fixture
def features() -> Features:
return {
"Instance": {
return Features(
instance={
"User features": [1.0, 2.0],
}
}
)
@pytest.fixture

@ -17,8 +17,8 @@ from miplearn.types import TrainingSample, Features
def test_xy() -> None:
features: Features = {
"Variables": {
features = Features(
variables={
"x": {
0: {
"Category": "default",
@ -37,7 +37,7 @@ def test_xy() -> None:
},
}
}
}
)
sample: TrainingSample = {
"Solution": {
"x": {
@ -78,8 +78,8 @@ def test_xy() -> None:
def test_xy_without_lp_solution() -> None:
features: Features = {
"Variables": {
features = Features(
variables={
"x": {
0: {
"Category": "default",
@ -98,7 +98,7 @@ def test_xy_without_lp_solution() -> None:
},
}
}
}
)
sample: TrainingSample = {
"Solution": {
"x": {
@ -143,8 +143,8 @@ def test_predict() -> None:
)
thr = Mock(spec=Threshold)
thr.predict = Mock(return_value=[0.75, 0.75])
features: Features = {
"Variables": {
features = Features(
variables={
"x": {
0: {
"Category": "default",
@ -160,7 +160,7 @@ def test_predict() -> None:
},
}
}
}
)
sample: TrainingSample = {
"LP solution": {
"x": {
@ -243,8 +243,8 @@ def test_evaluate() -> None:
4: 1.0,
}
}
features: Features = {
"Variables": {
features = Features(
variables={
"x": {
0: {},
1: {},
@ -253,7 +253,7 @@ def test_evaluate() -> None:
4: {},
}
}
}
)
sample: TrainingSample = {
"Solution": {
"x": {

@ -91,14 +91,18 @@ def test_solve_fit_from_disk():
solver.solve(instances[0])
instance_loaded = read_pickle_gz(instances[0].filename)
assert len(instance_loaded.training_data) > 0
assert len(instance_loaded.features) > 0
assert instance_loaded.features.instance is not None
assert instance_loaded.features.variables is not None
assert instance_loaded.features.constraints is not None
# Test: parallel_solve
solver.parallel_solve(instances)
for instance in instances:
instance_loaded = read_pickle_gz(instance.filename)
assert len(instance_loaded.training_data) > 0
assert len(instance_loaded.features) > 0
assert instance_loaded.features.instance is not None
assert instance_loaded.features.variables is not None
assert instance_loaded.features.constraints is not None
# Delete temporary files
for instance in instances:

@ -13,9 +13,8 @@ def test_knapsack() -> None:
instance = get_knapsack_instance(solver)
model = instance.to_model()
solver.set_instance(instance, model)
extractor = FeaturesExtractor(solver)
features = extractor.extract(instance)
assert features["Variables"] == {
FeaturesExtractor(solver).extract(instance)
assert instance.features.variables == {
"x": {
0: {
"Category": "default",
@ -35,20 +34,22 @@ def test_knapsack() -> None:
},
}
}
assert features["Constraints"]["eq_capacity"] == {
"LHS": {
"x[0]": 23.0,
"x[1]": 26.0,
"x[2]": 20.0,
"x[3]": 18.0,
},
"Sense": "<",
"RHS": 67.0,
"Lazy": False,
"Category": "eq_capacity",
"User features": [0.0],
assert instance.features.constraints == {
"eq_capacity": {
"LHS": {
"x[0]": 23.0,
"x[1]": 26.0,
"x[2]": 20.0,
"x[3]": 18.0,
},
"Sense": "<",
"RHS": 67.0,
"Lazy": False,
"Category": "eq_capacity",
"User features": [0.0],
}
}
assert features["Instance"] == {
assert instance.features.instance == {
"User features": [67.0, 21.75],
"Lazy constraint count": 0,
}

Loading…
Cancel
Save