mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Convert Features into dataclass
This commit is contained in:
@@ -61,13 +61,16 @@ class StaticLazyConstraintsComponent(Component):
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
assert solver.internal_solver is not None
|
||||
if not features["Instance"]["Lazy constraint count"] == 0:
|
||||
assert features.instance is not None
|
||||
assert features.constraints is not None
|
||||
|
||||
if not features.instance["Lazy constraint count"] == 0:
|
||||
logger.info("Instance does not have static lazy constraints. Skipping.")
|
||||
logger.info("Predicting required lazy constraints...")
|
||||
self.enforced_cids = set(self.sample_predict(features, training_data))
|
||||
logger.info("Moving lazy constraints to the pool...")
|
||||
self.pool = {}
|
||||
for (cid, cdict) in features["Constraints"].items():
|
||||
for (cid, cdict) in features.constraints.items():
|
||||
if cdict["Lazy"] and cid not in self.enforced_cids:
|
||||
self.pool[cid] = LazyConstraint(
|
||||
cid=cid,
|
||||
@@ -145,9 +148,11 @@ class StaticLazyConstraintsComponent(Component):
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> List[str]:
|
||||
assert features.constraints is not None
|
||||
|
||||
x, y = self.sample_xy(features, sample)
|
||||
category_to_cids: Dict[Hashable, List[str]] = {}
|
||||
for (cid, cdict) in features["Constraints"].items():
|
||||
for (cid, cdict) in features.constraints.items():
|
||||
if "Category" not in cdict or cdict["Category"] is None:
|
||||
continue
|
||||
category = cdict["Category"]
|
||||
@@ -172,9 +177,10 @@ class StaticLazyConstraintsComponent(Component):
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert features.constraints is not None
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
for (cid, cfeatures) in features["Constraints"].items():
|
||||
for (cid, cfeatures) in features.constraints.items():
|
||||
if not cfeatures["Lazy"]:
|
||||
continue
|
||||
category = cfeatures["Category"]
|
||||
|
||||
@@ -77,9 +77,10 @@ class ObjectiveValueComponent(Component):
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert features.instance is not None
|
||||
x: Dict[Hashable, List[List[float]]] = {}
|
||||
y: Dict[Hashable, List[List[float]]] = {}
|
||||
f = list(features["Instance"]["User features"])
|
||||
f = list(features.instance["User features"])
|
||||
if "LP value" in sample and sample["LP value"] is not None:
|
||||
f += [sample["LP value"]]
|
||||
for c in ["Upper bound", "Lower bound"]:
|
||||
|
||||
@@ -105,9 +105,11 @@ class PrimalSolutionComponent(Component):
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Solution:
|
||||
assert features.variables is not None
|
||||
|
||||
# Initialize empty solution
|
||||
solution: Solution = {}
|
||||
for (var_name, var_dict) in features["Variables"].items():
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
solution[var_name] = {}
|
||||
for idx in var_dict.keys():
|
||||
solution[var_name][idx] = None
|
||||
@@ -132,7 +134,7 @@ class PrimalSolutionComponent(Component):
|
||||
|
||||
# Convert y_pred into solution
|
||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||
for (var_name, var_dict) in features["Variables"].items():
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (idx, var_features) in var_dict.items():
|
||||
category = var_features["Category"]
|
||||
offset = category_offset[category]
|
||||
@@ -149,12 +151,13 @@ class PrimalSolutionComponent(Component):
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
||||
assert features.variables is not None
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
solution: Optional[Solution] = None
|
||||
if "Solution" in sample and sample["Solution"] is not None:
|
||||
solution = sample["Solution"]
|
||||
for (var_name, var_dict) in features["Variables"].items():
|
||||
for (var_name, var_dict) in features.variables.items():
|
||||
for (idx, var_features) in var_dict.items():
|
||||
category = var_features["Category"]
|
||||
if category is None:
|
||||
|
||||
@@ -19,13 +19,10 @@ class FeaturesExtractor:
|
||||
) -> None:
|
||||
self.solver = internal_solver
|
||||
|
||||
def extract(self, instance: "Instance") -> Features:
|
||||
features: Features = {
|
||||
"Variables": self._extract_variables(instance),
|
||||
"Constraints": self._extract_constraints(instance),
|
||||
}
|
||||
features["Instance"] = self._extract_instance(instance, features)
|
||||
return features
|
||||
def extract(self, instance: "Instance") -> None:
|
||||
instance.features.variables = self._extract_variables(instance)
|
||||
instance.features.constraints = self._extract_constraints(instance)
|
||||
instance.features.instance = self._extract_instance(instance, instance.features)
|
||||
|
||||
def _extract_variables(self, instance: "Instance") -> Dict:
|
||||
variables = self.solver.get_empty_solution()
|
||||
@@ -97,6 +94,7 @@ class FeaturesExtractor:
|
||||
instance: "Instance",
|
||||
features: Features,
|
||||
) -> InstanceFeatures:
|
||||
assert features.constraints is not None
|
||||
user_features = instance.get_instance_features()
|
||||
assert isinstance(user_features, list), (
|
||||
f"Instance features must be a list. "
|
||||
@@ -108,7 +106,7 @@ class FeaturesExtractor:
|
||||
f"Found {type(v).__name__} instead."
|
||||
)
|
||||
lazy_count = 0
|
||||
for (cid, cdict) in features["Constraints"].items():
|
||||
for (cid, cdict) in features.constraints.items():
|
||||
if cdict["Lazy"]:
|
||||
lazy_count += 1
|
||||
return {
|
||||
|
||||
@@ -47,7 +47,7 @@ class Instance(ABC):
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.training_data: List[TrainingSample] = []
|
||||
self.features: Features = {}
|
||||
self.features: Features = Features()
|
||||
|
||||
@abstractmethod
|
||||
def to_model(self) -> Any:
|
||||
@@ -206,8 +206,8 @@ class PickleGzInstance(Instance):
|
||||
Path of the gzipped pickle file that should be loaded.
|
||||
"""
|
||||
|
||||
# noinspection PyMissingConstructor
|
||||
def __init__(self, filename: str) -> None:
|
||||
super().__init__()
|
||||
assert os.path.exists(filename), f"File not found: {filename}"
|
||||
self.instance: Optional[Instance] = None
|
||||
self.filename: str = filename
|
||||
|
||||
@@ -148,9 +148,7 @@ class LearningSolver:
|
||||
self.internal_solver.set_instance(instance, model)
|
||||
|
||||
# Extract features
|
||||
extractor = FeaturesExtractor(self.internal_solver)
|
||||
instance.features.clear() # type: ignore
|
||||
instance.features.update(extractor.extract(instance))
|
||||
FeaturesExtractor(self.internal_solver).extract(instance)
|
||||
|
||||
callback_args = (
|
||||
self,
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Optional, Dict, Callable, Any, Union, Tuple, List, Set, Hashable
|
||||
from dataclasses import dataclass
|
||||
|
||||
from mypy_extensions import TypedDict
|
||||
|
||||
@@ -108,15 +109,13 @@ ConstraintFeatures = TypedDict(
|
||||
total=False,
|
||||
)
|
||||
|
||||
Features = TypedDict(
|
||||
"Features",
|
||||
{
|
||||
"Instance": InstanceFeatures,
|
||||
"Variables": Dict[str, Dict[VarIndex, VariableFeatures]],
|
||||
"Constraints": Dict[str, ConstraintFeatures],
|
||||
},
|
||||
total=False,
|
||||
)
|
||||
|
||||
@dataclass
|
||||
class Features:
|
||||
instance: Optional[InstanceFeatures] = None
|
||||
variables: Optional[Dict[str, Dict[VarIndex, VariableFeatures]]] = None
|
||||
constraints: Optional[Dict[str, ConstraintFeatures]] = None
|
||||
|
||||
|
||||
IterationCallback = Callable[[], bool]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user