mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Switch tests to simpler Knapsack encoding; remove outdated test
This commit is contained in:
@@ -3,16 +3,16 @@
|
|||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
from miplearn import BranchPriorityComponent, LearningSolver
|
from miplearn import BranchPriorityComponent, LearningSolver
|
||||||
from miplearn.problems.knapsack import MultiKnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tempfile
|
import tempfile
|
||||||
|
|
||||||
def _get_instances():
|
def _get_instances():
|
||||||
return [
|
return [
|
||||||
MultiKnapsackInstance(
|
KnapsackInstance(
|
||||||
weights=np.array([[23., 26., 20., 18.]]),
|
weights=[23., 26., 20., 18.],
|
||||||
prices=np.array([505., 352., 458., 220.]),
|
prices=[505., 352., 458., 220.],
|
||||||
capacities=np.array([67.])
|
capacity=67.,
|
||||||
),
|
),
|
||||||
] * 2
|
] * 2
|
||||||
|
|
||||||
@@ -23,11 +23,11 @@ def test_branching():
|
|||||||
for instance in instances:
|
for instance in instances:
|
||||||
component.after_solve(None, instance, None)
|
component.after_solve(None, instance, None)
|
||||||
component.fit(None)
|
component.fit(None)
|
||||||
for key in [0, 1, 2, 3]:
|
for key in ["default"]:
|
||||||
assert key in component.x_train.keys()
|
assert key in component.x_train.keys()
|
||||||
assert key in component.y_train.keys()
|
assert key in component.y_train.keys()
|
||||||
assert component.x_train[key].shape == (2, 9)
|
assert component.x_train[key].shape == (8, 4)
|
||||||
assert component.y_train[key].shape == (2, 1)
|
assert component.y_train[key].shape == (8, 1)
|
||||||
|
|
||||||
|
|
||||||
def test_branch_priority_save_load():
|
def test_branch_priority_save_load():
|
||||||
@@ -36,14 +36,14 @@ def test_branch_priority_save_load():
|
|||||||
solver.parallel_solve(_get_instances(), n_jobs=2)
|
solver.parallel_solve(_get_instances(), n_jobs=2)
|
||||||
solver.fit()
|
solver.fit()
|
||||||
comp = solver.components["branch-priority"]
|
comp = solver.components["branch-priority"]
|
||||||
assert comp.x_train[0].shape == (2, 9)
|
assert comp.x_train["default"].shape == (8, 4)
|
||||||
assert comp.y_train[0].shape == (2, 1)
|
assert comp.y_train["default"].shape == (8, 1)
|
||||||
assert 0 in comp.predictors.keys()
|
assert "default" in comp.predictors.keys()
|
||||||
solver.save_state(state_file.name)
|
solver.save_state(state_file.name)
|
||||||
|
|
||||||
solver = LearningSolver(components={"branch-priority": BranchPriorityComponent()})
|
solver = LearningSolver(components={"branch-priority": BranchPriorityComponent()})
|
||||||
solver.load_state(state_file.name)
|
solver.load_state(state_file.name)
|
||||||
comp = solver.components["branch-priority"]
|
comp = solver.components["branch-priority"]
|
||||||
assert comp.x_train[0].shape == (2, 9)
|
assert comp.x_train["default"].shape == (8, 4)
|
||||||
assert comp.y_train[0].shape == (2, 1)
|
assert comp.y_train["default"].shape == (8, 1)
|
||||||
assert 0 in comp.predictors.keys()
|
assert "default" in comp.predictors.keys()
|
||||||
|
|||||||
@@ -3,17 +3,17 @@
|
|||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
from miplearn import LearningSolver
|
from miplearn import LearningSolver
|
||||||
from miplearn.problems.knapsack import MultiKnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
from miplearn.branching import BranchPriorityComponent
|
from miplearn.branching import BranchPriorityComponent
|
||||||
from miplearn.warmstart import WarmStartComponent
|
from miplearn.warmstart import WarmStartComponent
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def _get_instance():
|
def _get_instance():
|
||||||
return MultiKnapsackInstance(
|
return KnapsackInstance(
|
||||||
weights=np.array([[23., 26., 20., 18.]]),
|
weights=[23., 26., 20., 18.],
|
||||||
prices=np.array([505., 352., 458., 220.]),
|
prices=[505., 352., 458., 220.],
|
||||||
capacities=np.array([67.])
|
capacity=67.,
|
||||||
)
|
)
|
||||||
|
|
||||||
def test_solver():
|
def test_solver():
|
||||||
@@ -50,8 +50,8 @@ def test_parallel_solve():
|
|||||||
solver = LearningSolver()
|
solver = LearningSolver()
|
||||||
results = solver.parallel_solve(instances, n_jobs=3)
|
results = solver.parallel_solve(instances, n_jobs=3)
|
||||||
assert len(results) == 10
|
assert len(results) == 10
|
||||||
assert len(solver.components["warm-start"].x_train[0]) == 10
|
assert len(solver.components["warm-start"].x_train["default"]) == 40
|
||||||
assert len(solver.components["warm-start"].y_train[0]) == 10
|
assert len(solver.components["warm-start"].y_train["default"]) == 40
|
||||||
|
|
||||||
def test_solver_random_branch_priority():
|
def test_solver_random_branch_priority():
|
||||||
instance = _get_instance()
|
instance = _get_instance()
|
||||||
|
|||||||
@@ -1,44 +0,0 @@
|
|||||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
|
||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
||||||
|
|
||||||
from miplearn import LearningSolver
|
|
||||||
from miplearn.transformers import PerVariableTransformer
|
|
||||||
from miplearn.problems.knapsack import MultiKnapsackInstance
|
|
||||||
import numpy as np
|
|
||||||
import pyomo.environ as pe
|
|
||||||
|
|
||||||
def test_transform_with_categories():
|
|
||||||
transformer = PerVariableTransformer()
|
|
||||||
instance = MultiKnapsackInstance(
|
|
||||||
weights=np.array([[23., 26., 20., 18.]]),
|
|
||||||
prices=np.array([505., 352., 458., 220.]),
|
|
||||||
capacities=np.array([67.])
|
|
||||||
)
|
|
||||||
model = instance.to_model()
|
|
||||||
solver = pe.SolverFactory('gurobi')
|
|
||||||
solver.options["threads"] = 1
|
|
||||||
solver.solve(model)
|
|
||||||
|
|
||||||
var_split = transformer.split_variables(instance, model)
|
|
||||||
var_split_expected = {
|
|
||||||
0: [(model.x, 0)],
|
|
||||||
1: [(model.x, 1)],
|
|
||||||
2: [(model.x, 2)],
|
|
||||||
3: [(model.x, 3)],
|
|
||||||
}
|
|
||||||
assert var_split == var_split_expected
|
|
||||||
|
|
||||||
var_index_pairs = var_split[0]
|
|
||||||
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
|
||||||
x_expected = np.hstack([
|
|
||||||
instance.get_instance_features(),
|
|
||||||
instance.get_variable_features(model.x, 0),
|
|
||||||
])
|
|
||||||
assert (x_expected == x_actual).all()
|
|
||||||
|
|
||||||
solver.solve(model)
|
|
||||||
|
|
||||||
y_actual = transformer.transform_solution(var_index_pairs)
|
|
||||||
y_expected = np.array([[0., 1.]])
|
|
||||||
assert y_actual.tolist() == y_expected.tolist()
|
|
||||||
@@ -3,17 +3,17 @@
|
|||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
from miplearn import WarmStartComponent, LearningSolver
|
from miplearn import WarmStartComponent, LearningSolver
|
||||||
from miplearn.problems.knapsack import MultiKnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tempfile
|
import tempfile
|
||||||
|
|
||||||
|
|
||||||
def _get_instances():
|
def _get_instances():
|
||||||
return [
|
return [
|
||||||
MultiKnapsackInstance(
|
KnapsackInstance(
|
||||||
weights=np.array([[23., 26., 20., 18.]]),
|
weights=[23., 26., 20., 18.],
|
||||||
prices=np.array([505., 352., 458., 220.]),
|
prices=[505., 352., 458., 220.],
|
||||||
capacities=np.array([67.])
|
capacity=67.,
|
||||||
),
|
),
|
||||||
] * 2
|
] * 2
|
||||||
|
|
||||||
@@ -24,14 +24,14 @@ def test_warm_start_save_load():
|
|||||||
solver.parallel_solve(_get_instances(), n_jobs=2)
|
solver.parallel_solve(_get_instances(), n_jobs=2)
|
||||||
solver.fit()
|
solver.fit()
|
||||||
comp = solver.components["warm-start"]
|
comp = solver.components["warm-start"]
|
||||||
assert comp.x_train[0].shape == (2, 9)
|
assert comp.x_train["default"].shape == (8, 4)
|
||||||
assert comp.y_train[0].shape == (2, 2)
|
assert comp.y_train["default"].shape == (8, 2)
|
||||||
assert 0 in comp.predictors.keys()
|
assert "default" in comp.predictors.keys()
|
||||||
solver.save_state(state_file.name)
|
solver.save_state(state_file.name)
|
||||||
|
|
||||||
solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
solver = LearningSolver(components={"warm-start": WarmStartComponent()})
|
||||||
solver.load_state(state_file.name)
|
solver.load_state(state_file.name)
|
||||||
comp = solver.components["warm-start"]
|
comp = solver.components["warm-start"]
|
||||||
assert comp.x_train[0].shape == (2, 9)
|
assert comp.x_train["default"].shape == (8, 4)
|
||||||
assert comp.y_train[0].shape == (2, 2)
|
assert comp.y_train["default"].shape == (8, 2)
|
||||||
assert 0 in comp.predictors.keys()
|
assert "default" in comp.predictors.keys()
|
||||||
|
|||||||
Reference in New Issue
Block a user