parent
bb42815404
commit
c82de560f4
@ -0,0 +1,70 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
import numpy as np
|
||||
from abc import ABC, abstractmethod
|
||||
from pyomo.core import Var
|
||||
|
||||
|
||||
class Extractor(ABC):
|
||||
@abstractmethod
|
||||
def extract(self, instances, models):
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def split_variables(instance, model):
|
||||
result = {}
|
||||
for var in model.component_objects(Var):
|
||||
for index in var:
|
||||
category = instance.get_variable_category(var, index)
|
||||
if category is None:
|
||||
continue
|
||||
if category not in result.keys():
|
||||
result[category] = []
|
||||
result[category] += [(var, index)]
|
||||
return result
|
||||
|
||||
|
||||
class UserFeaturesExtractor(Extractor):
|
||||
def extract(self,
|
||||
instances,
|
||||
models=None,
|
||||
):
|
||||
result = {}
|
||||
if models is None:
|
||||
models = [instance.to_model() for instance in instances]
|
||||
for (index, instance) in enumerate(instances):
|
||||
model = models[index]
|
||||
instance_features = instance.get_instance_features()
|
||||
var_split = self.split_variables(instance, model)
|
||||
for (category, var_index_pairs) in var_split.items():
|
||||
if category not in result.keys():
|
||||
result[category] = []
|
||||
for (var, index) in var_index_pairs:
|
||||
result[category] += [np.hstack([
|
||||
instance_features,
|
||||
instance.get_variable_features(var, index),
|
||||
])]
|
||||
for category in result.keys():
|
||||
result[category] = np.vstack(result[category])
|
||||
return result
|
||||
|
||||
|
||||
class SolutionExtractor(Extractor):
|
||||
def extract(self, instances, models):
|
||||
result = {}
|
||||
for (index, instance) in enumerate(instances):
|
||||
model = models[index]
|
||||
var_split = self.split_variables(instance, model)
|
||||
for (category, var_index_pairs) in var_split.items():
|
||||
if category not in result.keys():
|
||||
result[category] = []
|
||||
for (var, index) in var_index_pairs:
|
||||
result[category] += [[
|
||||
1 - var[index].value,
|
||||
var[index].value,
|
||||
]]
|
||||
for category in result.keys():
|
||||
result[category] = np.vstack(result[category])
|
||||
return result
|
@ -0,0 +1,54 @@
|
||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn import (UserFeaturesExtractor,
|
||||
SolutionExtractor)
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
|
||||
def _get_instances():
|
||||
return [
|
||||
KnapsackInstance(weights=[1., 2., 3.],
|
||||
prices=[10., 20., 30.],
|
||||
capacity=2.5,
|
||||
),
|
||||
KnapsackInstance(weights=[3., 4., 5.],
|
||||
prices=[20., 30., 40.],
|
||||
capacity=4.5,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def test_user_features():
|
||||
instances = _get_instances()
|
||||
extractor = UserFeaturesExtractor()
|
||||
features = extractor.extract(instances)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features.keys()
|
||||
assert isinstance(features["default"], np.ndarray)
|
||||
assert features["default"].shape == (6, 4)
|
||||
|
||||
|
||||
def test_solution_extractor():
|
||||
instances = _get_instances()
|
||||
models = [instance.to_model() for instance in instances]
|
||||
for model in models:
|
||||
solver = pe.SolverFactory("cbc")
|
||||
solver.solve(model)
|
||||
extractor = SolutionExtractor()
|
||||
features = extractor.extract(instances, models)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features.keys()
|
||||
assert isinstance(features["default"], np.ndarray)
|
||||
assert features["default"].shape == (6, 2)
|
||||
assert features["default"].ravel().tolist() == [
|
||||
1., 0.,
|
||||
0., 1.,
|
||||
1., 0.,
|
||||
1., 0.,
|
||||
0., 1.,
|
||||
1., 0.,
|
||||
]
|
Loading…
Reference in new issue