Switch tests to simpler Knapsack encoding; remove outdated test

pull/1/head
Alinson S. Xavier 6 years ago
parent c82de560f4
commit 6685f4ff23

@ -3,16 +3,16 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import BranchPriorityComponent, LearningSolver
from miplearn.problems.knapsack import MultiKnapsackInstance
from miplearn.problems.knapsack import KnapsackInstance
import numpy as np
import tempfile
def _get_instances():
return [
MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
),
] * 2
@ -23,11 +23,11 @@ def test_branching():
for instance in instances:
component.after_solve(None, instance, None)
component.fit(None)
for key in [0, 1, 2, 3]:
for key in ["default"]:
assert key in component.x_train.keys()
assert key in component.y_train.keys()
assert component.x_train[key].shape == (2, 9)
assert component.y_train[key].shape == (2, 1)
assert component.x_train[key].shape == (8, 4)
assert component.y_train[key].shape == (8, 1)
def test_branch_priority_save_load():
@ -36,14 +36,14 @@ def test_branch_priority_save_load():
solver.parallel_solve(_get_instances(), n_jobs=2)
solver.fit()
comp = solver.components["branch-priority"]
assert comp.x_train[0].shape == (2, 9)
assert comp.y_train[0].shape == (2, 1)
assert 0 in comp.predictors.keys()
assert comp.x_train["default"].shape == (8, 4)
assert comp.y_train["default"].shape == (8, 1)
assert "default" in comp.predictors.keys()
solver.save_state(state_file.name)
solver = LearningSolver(components={"branch-priority": BranchPriorityComponent()})
solver.load_state(state_file.name)
comp = solver.components["branch-priority"]
assert comp.x_train[0].shape == (2, 9)
assert comp.y_train[0].shape == (2, 1)
assert 0 in comp.predictors.keys()
assert comp.x_train["default"].shape == (8, 4)
assert comp.y_train["default"].shape == (8, 1)
assert "default" in comp.predictors.keys()

@ -3,17 +3,17 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.problems.knapsack import MultiKnapsackInstance
from miplearn.problems.knapsack import KnapsackInstance
from miplearn.branching import BranchPriorityComponent
from miplearn.warmstart import WarmStartComponent
import numpy as np
def _get_instance():
return MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
return KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
)
def test_solver():
@ -50,8 +50,8 @@ def test_parallel_solve():
solver = LearningSolver()
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
assert len(solver.components["warm-start"].x_train[0]) == 10
assert len(solver.components["warm-start"].y_train[0]) == 10
assert len(solver.components["warm-start"].x_train["default"]) == 40
assert len(solver.components["warm-start"].y_train["default"]) == 40
def test_solver_random_branch_priority():
instance = _get_instance()

@ -1,44 +0,0 @@
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.transformers import PerVariableTransformer
from miplearn.problems.knapsack import MultiKnapsackInstance
import numpy as np
import pyomo.environ as pe
def test_transform_with_categories():
transformer = PerVariableTransformer()
instance = MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
)
model = instance.to_model()
solver = pe.SolverFactory('gurobi')
solver.options["threads"] = 1
solver.solve(model)
var_split = transformer.split_variables(instance, model)
var_split_expected = {
0: [(model.x, 0)],
1: [(model.x, 1)],
2: [(model.x, 2)],
3: [(model.x, 3)],
}
assert var_split == var_split_expected
var_index_pairs = var_split[0]
x_actual = transformer.transform_instance(instance, var_index_pairs)
x_expected = np.hstack([
instance.get_instance_features(),
instance.get_variable_features(model.x, 0),
])
assert (x_expected == x_actual).all()
solver.solve(model)
y_actual = transformer.transform_solution(var_index_pairs)
y_expected = np.array([[0., 1.]])
assert y_actual.tolist() == y_expected.tolist()

@ -3,17 +3,17 @@
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import WarmStartComponent, LearningSolver
from miplearn.problems.knapsack import MultiKnapsackInstance
from miplearn.problems.knapsack import KnapsackInstance
import numpy as np
import tempfile
def _get_instances():
return [
MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
),
] * 2
@ -24,14 +24,14 @@ def test_warm_start_save_load():
solver.parallel_solve(_get_instances(), n_jobs=2)
solver.fit()
comp = solver.components["warm-start"]
assert comp.x_train[0].shape == (2, 9)
assert comp.y_train[0].shape == (2, 2)
assert 0 in comp.predictors.keys()
assert comp.x_train["default"].shape == (8, 4)
assert comp.y_train["default"].shape == (8, 2)
assert "default" in comp.predictors.keys()
solver.save_state(state_file.name)
solver = LearningSolver(components={"warm-start": WarmStartComponent()})
solver.load_state(state_file.name)
comp = solver.components["warm-start"]
assert comp.x_train[0].shape == (2, 9)
assert comp.y_train[0].shape == (2, 2)
assert 0 in comp.predictors.keys()
assert comp.x_train["default"].shape == (8, 4)
assert comp.y_train["default"].shape == (8, 2)
assert "default" in comp.predictors.keys()

Loading…
Cancel
Save