mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Rename before/after_solve to before/after_solve_mip
This commit is contained in:
@@ -21,14 +21,14 @@ class Component(ABC):
|
|||||||
strategy.
|
strategy.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def before_solve(
|
def before_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
model: Any,
|
model: Any,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Method called by LearningSolver before the problem is solved.
|
Method called by LearningSolver before the MIP is solved.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
@@ -42,7 +42,7 @@ class Component(ABC):
|
|||||||
return
|
return
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
@@ -51,7 +51,7 @@ class Component(ABC):
|
|||||||
training_data: TrainingSample,
|
training_data: TrainingSample,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Method called by LearningSolver after the problem is solved to optimality.
|
Method called by LearningSolver after the MIP is solved.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|||||||
@@ -21,11 +21,11 @@ class CompositeComponent(Component):
|
|||||||
def __init__(self, children):
|
def __init__(self, children):
|
||||||
self.children = children
|
self.children = children
|
||||||
|
|
||||||
def before_solve(self, solver, instance, model):
|
def before_solve_mip(self, solver, instance, model):
|
||||||
for child in self.children:
|
for child in self.children:
|
||||||
child.before_solve(solver, instance, model)
|
child.before_solve_mip(solver, instance, model)
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
@@ -34,7 +34,7 @@ class CompositeComponent(Component):
|
|||||||
training_data,
|
training_data,
|
||||||
):
|
):
|
||||||
for child in self.children:
|
for child in self.children:
|
||||||
child.after_solve(solver, instance, model, stats, training_data)
|
child.after_solve_mip(solver, instance, model, stats, training_data)
|
||||||
|
|
||||||
def fit(self, training_instances):
|
def fit(self, training_instances):
|
||||||
for child in self.children:
|
for child in self.children:
|
||||||
|
|||||||
@@ -33,7 +33,7 @@ class UserCutsComponent(Component):
|
|||||||
self.classifier_prototype: Classifier = classifier
|
self.classifier_prototype: Classifier = classifier
|
||||||
self.classifiers: Dict[Any, Classifier] = {}
|
self.classifiers: Dict[Any, Classifier] = {}
|
||||||
|
|
||||||
def before_solve(self, solver, instance, model):
|
def before_solve_mip(self, solver, instance, model):
|
||||||
instance.found_violated_user_cuts = []
|
instance.found_violated_user_cuts = []
|
||||||
logger.info("Predicting violated user cuts...")
|
logger.info("Predicting violated user cuts...")
|
||||||
violations = self.predict(instance)
|
violations = self.predict(instance)
|
||||||
@@ -42,7 +42,7 @@ class UserCutsComponent(Component):
|
|||||||
cut = instance.build_user_cut(model, v)
|
cut = instance.build_user_cut(model, v)
|
||||||
solver.internal_solver.add_constraint(cut)
|
solver.internal_solver.add_constraint(cut)
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
|
|||||||
@@ -33,7 +33,7 @@ class DynamicLazyConstraintsComponent(Component):
|
|||||||
self.classifier_prototype: Classifier = classifier
|
self.classifier_prototype: Classifier = classifier
|
||||||
self.classifiers: Dict[Any, Classifier] = {}
|
self.classifiers: Dict[Any, Classifier] = {}
|
||||||
|
|
||||||
def before_solve(self, solver, instance, model):
|
def before_solve_mip(self, solver, instance, model):
|
||||||
instance.found_violated_lazy_constraints = []
|
instance.found_violated_lazy_constraints = []
|
||||||
logger.info("Predicting violated lazy constraints...")
|
logger.info("Predicting violated lazy constraints...")
|
||||||
violations = self.predict(instance)
|
violations = self.predict(instance)
|
||||||
@@ -54,7 +54,7 @@ class DynamicLazyConstraintsComponent(Component):
|
|||||||
solver.internal_solver.add_constraint(cut)
|
solver.internal_solver.add_constraint(cut)
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
|
|||||||
@@ -40,7 +40,7 @@ class StaticLazyConstraintsComponent(Component):
|
|||||||
self.use_two_phase_gap = use_two_phase_gap
|
self.use_two_phase_gap = use_two_phase_gap
|
||||||
self.violation_tolerance = violation_tolerance
|
self.violation_tolerance = violation_tolerance
|
||||||
|
|
||||||
def before_solve(self, solver, instance, model):
|
def before_solve_mip(self, solver, instance, model):
|
||||||
self.pool = []
|
self.pool = []
|
||||||
if not solver.use_lazy_cb and self.use_two_phase_gap:
|
if not solver.use_lazy_cb and self.use_two_phase_gap:
|
||||||
logger.info("Increasing gap tolerance to %f", self.large_gap)
|
logger.info("Increasing gap tolerance to %f", self.large_gap)
|
||||||
@@ -52,7 +52,7 @@ class StaticLazyConstraintsComponent(Component):
|
|||||||
if instance.has_static_lazy_constraints():
|
if instance.has_static_lazy_constraints():
|
||||||
self._extract_and_predict_static(solver, instance)
|
self._extract_and_predict_static(solver, instance)
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
|
|||||||
@@ -44,7 +44,7 @@ class ObjectiveValueComponent(Component):
|
|||||||
self._predicted_ub: Optional[float] = None
|
self._predicted_ub: Optional[float] = None
|
||||||
self._predicted_lb: Optional[float] = None
|
self._predicted_lb: Optional[float] = None
|
||||||
|
|
||||||
def before_solve(
|
def before_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
@@ -63,7 +63,7 @@ class ObjectiveValueComponent(Component):
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
|
|||||||
@@ -52,7 +52,7 @@ class PrimalSolutionComponent(Component):
|
|||||||
self._n_zero = 0
|
self._n_zero = 0
|
||||||
self._n_one = 0
|
self._n_one = 0
|
||||||
|
|
||||||
def before_solve(self, solver, instance, model):
|
def before_solve_mip(self, solver, instance, model):
|
||||||
if len(self.thresholds) > 0:
|
if len(self.thresholds) > 0:
|
||||||
logger.info("Predicting primal solution...")
|
logger.info("Predicting primal solution...")
|
||||||
solution = self.predict(instance)
|
solution = self.predict(instance)
|
||||||
@@ -77,7 +77,7 @@ class PrimalSolutionComponent(Component):
|
|||||||
else:
|
else:
|
||||||
solver.internal_solver.set_warm_start(solution)
|
solver.internal_solver.set_warm_start(solution)
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver: "LearningSolver",
|
solver: "LearningSolver",
|
||||||
instance: Instance,
|
instance: Instance,
|
||||||
|
|||||||
@@ -46,7 +46,7 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|||||||
self.converted = []
|
self.converted = []
|
||||||
self.original_sense = {}
|
self.original_sense = {}
|
||||||
|
|
||||||
def before_solve(self, solver, instance, _):
|
def before_solve_mip(self, solver, instance, _):
|
||||||
logger.info("Predicting tight LP constraints...")
|
logger.info("Predicting tight LP constraints...")
|
||||||
x, constraints = DropRedundantInequalitiesStep._x_test(
|
x, constraints = DropRedundantInequalitiesStep._x_test(
|
||||||
instance,
|
instance,
|
||||||
@@ -73,7 +73,7 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
|||||||
|
|
||||||
logger.info(f"Converted {self.n_converted} inequalities")
|
logger.info(f"Converted {self.n_converted} inequalities")
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
|
|||||||
@@ -50,7 +50,7 @@ class DropRedundantInequalitiesStep(Component):
|
|||||||
self.total_kept = 0
|
self.total_kept = 0
|
||||||
self.total_iterations = 0
|
self.total_iterations = 0
|
||||||
|
|
||||||
def before_solve(self, solver, instance, _):
|
def before_solve_mip(self, solver, instance, _):
|
||||||
self.current_iteration = 0
|
self.current_iteration = 0
|
||||||
|
|
||||||
logger.info("Predicting redundant LP constraints...")
|
logger.info("Predicting redundant LP constraints...")
|
||||||
@@ -79,7 +79,7 @@ class DropRedundantInequalitiesStep(Component):
|
|||||||
self.total_kept += 1
|
self.total_kept += 1
|
||||||
logger.info(f"Extracted {self.total_dropped} predicted constraints")
|
logger.info(f"Extracted {self.total_dropped} predicted constraints")
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
|
|||||||
@@ -14,11 +14,11 @@ class RelaxIntegralityStep(Component):
|
|||||||
Component that relaxes all integrality constraints before the problem is solved.
|
Component that relaxes all integrality constraints before the problem is solved.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def before_solve(self, solver, instance, _):
|
def before_solve_mip(self, solver, instance, _):
|
||||||
logger.info("Relaxing integrality...")
|
logger.info("Relaxing integrality...")
|
||||||
solver.internal_solver.relax()
|
solver.internal_solver.relax()
|
||||||
|
|
||||||
def after_solve(
|
def after_solve_mip(
|
||||||
self,
|
self,
|
||||||
solver,
|
solver,
|
||||||
instance,
|
instance,
|
||||||
|
|||||||
@@ -86,7 +86,7 @@ class LearningSolver:
|
|||||||
If true, use native solver callbacks for enforcing lazy constraints,
|
If true, use native solver callbacks for enforcing lazy constraints,
|
||||||
instead of a simple loop. May not be supported by all solvers.
|
instead of a simple loop. May not be supported by all solvers.
|
||||||
solve_lp_first: bool
|
solve_lp_first: bool
|
||||||
If true, solve LP relaxation first, then solve original MILP. This
|
If true, solve LP relaxation first, then solve original MIP. This
|
||||||
option should be activated if the LP relaxation is not very
|
option should be activated if the LP relaxation is not very
|
||||||
expensive to solve and if it provides good hints for the integer
|
expensive to solve and if it provides good hints for the integer
|
||||||
solution.
|
solution.
|
||||||
@@ -187,9 +187,9 @@ class LearningSolver:
|
|||||||
training_sample["LP value"] = 0.0
|
training_sample["LP value"] = 0.0
|
||||||
|
|
||||||
# Before-solve callbacks
|
# Before-solve callbacks
|
||||||
logger.debug("Running before_solve callbacks...")
|
logger.debug("Running before_solve_mip callbacks...")
|
||||||
for component in self.components.values():
|
for component in self.components.values():
|
||||||
component.before_solve(self, instance, model)
|
component.before_solve_mip(self, instance, model)
|
||||||
|
|
||||||
# Define wrappers
|
# Define wrappers
|
||||||
def iteration_cb_wrapper() -> bool:
|
def iteration_cb_wrapper() -> bool:
|
||||||
@@ -212,8 +212,8 @@ class LearningSolver:
|
|||||||
if self.use_lazy_cb:
|
if self.use_lazy_cb:
|
||||||
lazy_cb = lazy_cb_wrapper
|
lazy_cb = lazy_cb_wrapper
|
||||||
|
|
||||||
# Solve MILP
|
# Solve MIP
|
||||||
logger.info("Solving MILP...")
|
logger.info("Solving MIP...")
|
||||||
stats = cast(
|
stats = cast(
|
||||||
LearningSolveStats,
|
LearningSolveStats,
|
||||||
self.internal_solver.solve(
|
self.internal_solver.solve(
|
||||||
@@ -238,9 +238,9 @@ class LearningSolver:
|
|||||||
training_sample["Solution"] = self.internal_solver.get_solution()
|
training_sample["Solution"] = self.internal_solver.get_solution()
|
||||||
|
|
||||||
# After-solve callbacks
|
# After-solve callbacks
|
||||||
logger.debug("Calling after_solve callbacks...")
|
logger.debug("Calling after_solve_mip callbacks...")
|
||||||
for component in self.components.values():
|
for component in self.components.values():
|
||||||
component.after_solve(self, instance, model, stats, training_sample)
|
component.after_solve_mip(self, instance, model, stats, training_sample)
|
||||||
|
|
||||||
# Write to file, if necessary
|
# Write to file, if necessary
|
||||||
if not discard_output and filename is not None:
|
if not discard_output and filename is not None:
|
||||||
|
|||||||
@@ -80,7 +80,7 @@ def test_drop_redundant():
|
|||||||
component.classifiers = classifiers
|
component.classifiers = classifiers
|
||||||
|
|
||||||
# LearningSolver calls before_solve
|
# LearningSolver calls before_solve
|
||||||
component.before_solve(solver, instance, None)
|
component.before_solve_mip(solver, instance, None)
|
||||||
|
|
||||||
# Should query list of constraints
|
# Should query list of constraints
|
||||||
internal.get_constraint_ids.assert_called_once()
|
internal.get_constraint_ids.assert_called_once()
|
||||||
@@ -123,7 +123,7 @@ def test_drop_redundant():
|
|||||||
|
|
||||||
# LearningSolver calls after_solve
|
# LearningSolver calls after_solve
|
||||||
training_data = {}
|
training_data = {}
|
||||||
component.after_solve(solver, instance, None, {}, training_data)
|
component.after_solve_mip(solver, instance, None, {}, training_data)
|
||||||
|
|
||||||
# Should query slack for all inequalities
|
# Should query slack for all inequalities
|
||||||
internal.get_inequality_slacks.assert_called_once()
|
internal.get_inequality_slacks.assert_called_once()
|
||||||
@@ -147,7 +147,7 @@ def test_drop_redundant_with_check_feasibility():
|
|||||||
component.classifiers = classifiers
|
component.classifiers = classifiers
|
||||||
|
|
||||||
# LearningSolver call before_solve
|
# LearningSolver call before_solve
|
||||||
component.before_solve(solver, instance, None)
|
component.before_solve_mip(solver, instance, None)
|
||||||
|
|
||||||
# Assert constraints are extracted
|
# Assert constraints are extracted
|
||||||
assert internal.extract_constraint.call_count == 2
|
assert internal.extract_constraint.call_count == 2
|
||||||
|
|||||||
@@ -22,14 +22,14 @@ def test_composite():
|
|||||||
cc = CompositeComponent([c1, c2])
|
cc = CompositeComponent([c1, c2])
|
||||||
|
|
||||||
# Should broadcast before_solve
|
# Should broadcast before_solve
|
||||||
cc.before_solve(solver, instance, model)
|
cc.before_solve_mip(solver, instance, model)
|
||||||
c1.before_solve.assert_has_calls([call(solver, instance, model)])
|
c1.before_solve_mip.assert_has_calls([call(solver, instance, model)])
|
||||||
c2.before_solve.assert_has_calls([call(solver, instance, model)])
|
c2.before_solve_mip.assert_has_calls([call(solver, instance, model)])
|
||||||
|
|
||||||
# Should broadcast after_solve
|
# Should broadcast after_solve
|
||||||
cc.after_solve(solver, instance, model, {}, {})
|
cc.after_solve_mip(solver, instance, model, {}, {})
|
||||||
c1.after_solve.assert_has_calls([call(solver, instance, model, {}, {})])
|
c1.after_solve_mip.assert_has_calls([call(solver, instance, model, {}, {})])
|
||||||
c2.after_solve.assert_has_calls([call(solver, instance, model, {}, {})])
|
c2.after_solve_mip.assert_has_calls([call(solver, instance, model, {}, {})])
|
||||||
|
|
||||||
# Should broadcast fit
|
# Should broadcast fit
|
||||||
cc.fit([1, 2, 3])
|
cc.fit([1, 2, 3])
|
||||||
|
|||||||
@@ -85,7 +85,7 @@ def test_lazy_before():
|
|||||||
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
|
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
|
||||||
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
|
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
|
||||||
|
|
||||||
component.before_solve(solver, instances[0], models[0])
|
component.before_solve_mip(solver, instances[0], models[0])
|
||||||
|
|
||||||
# Should ask classifier likelihood of each constraint being violated
|
# Should ask classifier likelihood of each constraint being violated
|
||||||
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
|
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
|
||||||
|
|||||||
@@ -68,7 +68,7 @@ def test_usage_with_solver():
|
|||||||
)
|
)
|
||||||
|
|
||||||
# LearningSolver calls before_solve
|
# LearningSolver calls before_solve
|
||||||
component.before_solve(solver, instance, None)
|
component.before_solve_mip(solver, instance, None)
|
||||||
|
|
||||||
# Should ask if instance has static lazy constraints
|
# Should ask if instance has static lazy constraints
|
||||||
instance.has_static_lazy_constraints.assert_called_once()
|
instance.has_static_lazy_constraints.assert_called_once()
|
||||||
|
|||||||
Reference in New Issue
Block a user