|
|
|
@ -2,7 +2,8 @@
|
|
|
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
|
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Hashable, List, Tuple, TYPE_CHECKING
|
|
|
|
|
import logging
|
|
|
|
|
from typing import Dict, Hashable, List, Tuple, Optional
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
from overrides import overrides
|
|
|
|
@ -11,15 +12,11 @@ from miplearn.classifiers import Classifier
|
|
|
|
|
from miplearn.classifiers.threshold import Threshold
|
|
|
|
|
from miplearn.components import classifier_evaluation_dict
|
|
|
|
|
from miplearn.components.component import Component
|
|
|
|
|
from miplearn.features import TrainingSample
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
|
|
from miplearn.features import TrainingSample, Sample
|
|
|
|
|
from miplearn.instance.base import Instance
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
|
from miplearn.solvers.learning import Instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DynamicConstraintsComponent(Component):
|
|
|
|
|
"""
|
|
|
|
@ -40,9 +37,9 @@ class DynamicConstraintsComponent(Component):
|
|
|
|
|
self.known_cids: List[str] = []
|
|
|
|
|
self.attr = attr
|
|
|
|
|
|
|
|
|
|
def sample_xy_with_cids(
|
|
|
|
|
def sample_xy_with_cids_old(
|
|
|
|
|
self,
|
|
|
|
|
instance: "Instance",
|
|
|
|
|
instance: Instance,
|
|
|
|
|
sample: TrainingSample,
|
|
|
|
|
) -> Tuple[
|
|
|
|
|
Dict[Hashable, List[List[float]]],
|
|
|
|
@ -78,25 +75,78 @@ class DynamicConstraintsComponent(Component):
|
|
|
|
|
y[category] += [[True, False]]
|
|
|
|
|
return x, y, cids
|
|
|
|
|
|
|
|
|
|
def sample_xy_with_cids(
|
|
|
|
|
self,
|
|
|
|
|
instance: Optional[Instance],
|
|
|
|
|
sample: Sample,
|
|
|
|
|
) -> Tuple[
|
|
|
|
|
Dict[Hashable, List[List[float]]],
|
|
|
|
|
Dict[Hashable, List[List[bool]]],
|
|
|
|
|
Dict[Hashable, List[str]],
|
|
|
|
|
]:
|
|
|
|
|
assert instance is not None
|
|
|
|
|
x: Dict[Hashable, List[List[float]]] = {}
|
|
|
|
|
y: Dict[Hashable, List[List[bool]]] = {}
|
|
|
|
|
cids: Dict[Hashable, List[str]] = {}
|
|
|
|
|
for cid in self.known_cids:
|
|
|
|
|
# Initialize categories
|
|
|
|
|
category = instance.get_constraint_category(cid)
|
|
|
|
|
if category is None:
|
|
|
|
|
continue
|
|
|
|
|
if category not in x:
|
|
|
|
|
x[category] = []
|
|
|
|
|
y[category] = []
|
|
|
|
|
cids[category] = []
|
|
|
|
|
|
|
|
|
|
# Features
|
|
|
|
|
features = []
|
|
|
|
|
assert sample.after_lp is not None
|
|
|
|
|
assert sample.after_lp.instance is not None
|
|
|
|
|
features.extend(sample.after_lp.instance.to_list())
|
|
|
|
|
features.extend(instance.get_constraint_features(cid))
|
|
|
|
|
for ci in features:
|
|
|
|
|
assert isinstance(ci, float)
|
|
|
|
|
x[category].append(features)
|
|
|
|
|
cids[category].append(cid)
|
|
|
|
|
|
|
|
|
|
# Labels
|
|
|
|
|
if sample.after_mip is not None:
|
|
|
|
|
assert sample.after_mip.extra is not None
|
|
|
|
|
if sample.after_mip.extra[self.attr] is not None:
|
|
|
|
|
if cid in sample.after_mip.extra[self.attr]:
|
|
|
|
|
y[category] += [[False, True]]
|
|
|
|
|
else:
|
|
|
|
|
y[category] += [[True, False]]
|
|
|
|
|
return x, y, cids
|
|
|
|
|
|
|
|
|
|
@overrides
|
|
|
|
|
def sample_xy_old(
|
|
|
|
|
self,
|
|
|
|
|
instance: "Instance",
|
|
|
|
|
instance: Instance,
|
|
|
|
|
sample: TrainingSample,
|
|
|
|
|
) -> Tuple[Dict, Dict]:
|
|
|
|
|
x, y, _ = self.sample_xy_with_cids_old(instance, sample)
|
|
|
|
|
return x, y
|
|
|
|
|
|
|
|
|
|
@overrides
|
|
|
|
|
def sample_xy(
|
|
|
|
|
self,
|
|
|
|
|
instance: Optional[Instance],
|
|
|
|
|
sample: Sample,
|
|
|
|
|
) -> Tuple[Dict, Dict]:
|
|
|
|
|
x, y, _ = self.sample_xy_with_cids(instance, sample)
|
|
|
|
|
return x, y
|
|
|
|
|
|
|
|
|
|
def sample_predict(
|
|
|
|
|
self,
|
|
|
|
|
instance: "Instance",
|
|
|
|
|
instance: Instance,
|
|
|
|
|
sample: TrainingSample,
|
|
|
|
|
) -> List[Hashable]:
|
|
|
|
|
pred: List[Hashable] = []
|
|
|
|
|
if len(self.known_cids) == 0:
|
|
|
|
|
logger.info("Classifiers not fitted. Skipping.")
|
|
|
|
|
return pred
|
|
|
|
|
x, _, cids = self.sample_xy_with_cids(instance, sample)
|
|
|
|
|
x, _, cids = self.sample_xy_with_cids_old(instance, sample)
|
|
|
|
|
for category in x.keys():
|
|
|
|
|
assert category in self.classifiers
|
|
|
|
|
assert category in self.thresholds
|
|
|
|
@ -111,7 +161,7 @@ class DynamicConstraintsComponent(Component):
|
|
|
|
|
return pred
|
|
|
|
|
|
|
|
|
|
@overrides
|
|
|
|
|
def fit(self, training_instances: List["Instance"]) -> None:
|
|
|
|
|
def fit(self, training_instances: List[Instance]) -> None:
|
|
|
|
|
collected_cids = set()
|
|
|
|
|
for instance in training_instances:
|
|
|
|
|
instance.load()
|
|
|
|
@ -141,7 +191,7 @@ class DynamicConstraintsComponent(Component):
|
|
|
|
|
@overrides
|
|
|
|
|
def sample_evaluate_old(
|
|
|
|
|
self,
|
|
|
|
|
instance: "Instance",
|
|
|
|
|
instance: Instance,
|
|
|
|
|
sample: TrainingSample,
|
|
|
|
|
) -> Dict[Hashable, Dict[str, float]]:
|
|
|
|
|
assert getattr(sample, self.attr) is not None
|
|
|
|
|